

Fullstack React Native
The Complete Guide to React Native

Written by Devin Abbott, Houssein Djirdeh, Anthony Accomazzo, and Sophia
Shoemaker

© 2019 Fullstack.io

All rights reserved. No portion of the book manuscript may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means beyond the number of purchased copies,
except for a single backup or archival copy. The code may be used freely in your projects,
commercial or otherwise.

The authors and publisher have taken care in preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damagers in connection with or arising out
of the use of the information or programs container herein.

Published in San Francisco, California by Fullstack.io.

FULLSTACK.io

Contents

Book Revision . 1
Bug Reports . 1
Be notified of updates via Twitter . 1
We’d love to hear from you! . 1

Introduction . 1
About This Book . 2
Running Code Examples . 3
Code Blocks and Context . 4
Getting Help . 5
Emailing Us . 5

Getting Started with React Native . 7
Weather App . 7
Starting the project . 10
Expo . 11
Components . 21
Custom components . 41
Summary . 86

React Fundamentals . 87
Breaking the app into components . 88
7 step process . 93
Step 2: Build a static version of the app . 96
Step 3: Determine what should be stateful . 114
Step 4: Determine in which component each piece of state should live . . 117
Step 5: Hardcode initial states . 119
Step 6: Add inverse data flow . 133

CONTENTS

Updating timers . 143
Deleting timers . 150
Adding timing functionality . 153
Add start and stop functionality . 156
Methodology review . 166

Core Components, Part 1 . 168
What are components? . 168
Building an Instagram clone . 169
View . 178
StyleSheet . 188
Text . 191
TouchableOpacity . 201
Image . 207
ActivityIndicator . 216
FlatList . 222

Core Components, Part 2 . 237
TextInput . 240
ScrollView . 246
Modal . 254

Core APIs, Part 1 . 269
Building a messaging app . 269
Initializing the project . 274
The app . 274
Network connectivity indicator . 278
The message list . 293
Toolbar . 320
Geolocation . 333
Input Method Editor (IME) . 335

Core APIs, Part 2 . 355
The keyboard . 355
We’re Done! . 385

Navigation . 386

CONTENTS

Navigation in React Native . 386
Contact List . 394
Starting the project . 400
Container and Presentational components . 402
Contacts . 403
Profile . 408
React Navigation . 412
Stack navigation . 414
Tab navigation . 429
Drawer navigation . 453
Sharing state between screens . 460
Deep Linking . 470
Summary . 476

Animation . 477
Animation challenges . 477
Building a puzzle game . 479
App . 484
Building the Start screen . 488
Building the Game screen . 518
Summary . 534

Gestures . 535
Building the board . 536
Gesture Responder System . 550
PanResponder . 554
Draggable component . 556
Finishing the game . 574
We’re Done! . 579

Native Modules . 581
What are native modules? . 581
Building a native module . 583
Development environment . 585
Initializing the project . 586
iOS . 590
Android . 602

CONTENTS

JavaScript . 612

Building and publishing . 622
How to read this chapter . 622
Building . 623
Building with Expo . 623
iOS . 627
Android . 646
Handling Updates . 655
Summary . 656

Appendix . 657
JavaScript Versions . 657
ES2015 . 657
ReactElement . 665
Handling Events in React Native . 666
Publishing with Expo . 671

Changelog . 672

CONTENTS 1

Book Revision

Revision 10

Bug Reports

If you’d like to report any bugs, typos, or suggestions just email us at: rn@fullstack.io¹.

Be notified of updates via Twitter

If you’d like to be notified of updates to the book on Twitter, follow @fullstackreact²

We’d love to hear from you!

Did you like the book? Did you find it helpful? We’d love to add your face to our list
of testimonials on the website! Email us at: rn@fullstack.io³.

¹mailto:rn@fullstack.io?Subject=Fullstack%20React%20Native%20book%20feedback
²https://twitter.com/fullstackreact
³mailto:rn@fullstack.io?Subject=React%20Native%20testimonial

mailto:rn@fullstack.io?Subject=Fullstack%20React%20Native%20book%20feedback
https://twitter.com/fullstackreact
mailto:rn@fullstack.io?Subject=React%20Native%20testimonial
mailto:rn@fullstack.io?Subject=Fullstack%20React%20Native%20book%20feedback
https://twitter.com/fullstackreact
mailto:rn@fullstack.io?Subject=React%20Native%20testimonial

Introduction
One of the major problems that teams face when writing native mobile applications
is becoming familiar with all the different technologies. iOS and Android - the two
dominant mobile platforms - support different languages. For iOS, Apple supports
the languages Swift⁴ and Objective-C⁵. For Android, Google supports the languages
Java⁶ and Kotlin⁷.

And the differences don’t end there. These platforms have different toolchains. And
they have different interfaces for the device’s core functionality. Developers have
to learn each platform’s procedure for things like accessing the camera or checking
network connectivity.

One trend is to write mobile apps that are powered by WebViews. These types of
apps have minimal native code. Instead, the interface is a web browser running an
app written in HTML, CSS, and JS. This web app can use the native wrapper to access
features on the device, like the camera roll.

Tools like Cordova⁸ enable developers to write these hybrid apps. The advantage is
that developers can write apps that run on multiple platforms. Instead of learning
iOS and Android specifics, they can use HTML, CSS, and JS to write a “universal”
app.

The disadvantage, though, is that it’s hard to make these apps look and feel like real
native applications. And users can tell.

While universal WebView-powered apps were built with the idea of build once, run
anywhere, React Native was built with the goal of learn once, write anywhere.

React is a JavaScript framework for building rich, interactive web applications. With
React Native, we can build native mobile applications for multiple platforms using

⁴https://developer.apple.com/swift/
⁵https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/

Introduction/Introduction.html
⁶https://docs.oracle.com/javase/8/docs/technotes/guides/language/index.html
⁷https://developer.android.com/kotlin/index.html
⁸https://cordova.apache.org/

https://developer.apple.com/swift/
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/index.html
https://developer.android.com/kotlin/index.html
https://cordova.apache.org/
https://developer.apple.com/swift/
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/index.html
https://developer.android.com/kotlin/index.html
https://cordova.apache.org/

Introduction 2

JavaScript and React. Importantly, the interfaces we build are translated into native
views. React Native apps are not composed of WebViews.

We’ll be able to share a lot of the code we write between iOS and Android. And React
Native makes it easy to write code specific to each platform when the need arises.
We get to use one language (JavaScript), one framework (React), one styling engine,
and one toolchain to write apps for both platforms. Learn once, write anywhere.

At its core, React Native is composed of React components. We’ll dig deep into
components throughout this book, but here’s an example of what a React component
looks like:

import React from 'react';

import { StyleSheet, Text } from 'react-native';

export default class StyledText extends React.Component {

render() {

return (

<Text style={styles.text}>{this.props.content}</Text>

);

}

}

const styles = StyleSheet.create({

text: {

color: 'red',

fontWeight: 'bold',

},

});

React Nativeworks. It is currently being used in production at Facebook, Instagram,
Microsoft, Amazon, and thousands of other companies.

About This Book

This book aims to be an extensive React Native resource. By the time you’re done
reading this book, you (and your team) will have everything you need to build

Introduction 3

reliable React Native applications.

React Native is rich and feature-filled, but that also means it can be tricky to
understand all of its parts. In this book, we’ll walk through everything, such as
installing its tools, writing components, navigating between screens, and integrating
native modules.

But before we dig in, there are a few guidelines we want to give you in order to get
the most out of this book. Specifically:

• how to approach the code examples
• how to get help if something goes wrong

Running Code Examples

This book comes with a library of runnable code examples. If you purchased a digital
copy of this book, the code is available to download from the same place where you
downloaded the book. If you purchased a physical copy, you can find download
instructions right after the table of contents and before this Introduction chapter.

We use yarn⁹ to run every example in this book. This means you can type the
following commands to run any example:

• yarn start will start the React Native packager and print a QR code. If you’re
on an Android mobile device, scanning this code with the Expo¹⁰ app will load
the application. For iOS devices, see the instructions for loading apps onto your
phone at the beginning of the first chapter.

• yarn run ios will start the React Native packager and open your app in the
iOS Simulator if you are using a Mac.

• yarn run android will start the React Native packager and open your app on a
connected Android device or emulator.

In the next chapter we’ll explain each of these commands in detail.

⁹https://yarnpkg.com/en/
¹⁰https://expo.io/

https://yarnpkg.com/en/
https://expo.io/
https://yarnpkg.com/en/
https://expo.io/

Introduction 4

Code Blocks and Context

Nearly every code block in this book is pulled from a runnable code example, which
you can find in the sample code. For example, here is a code block pulled from the
first chapter:

weather/1/App.js

import React from 'react';

import { StyleSheet, Text, View } from 'react-native';

export default class App extends React.Component {

render() {

return (

<View style={styles.container}>

<Text>Open up App.js to start working on your app!</Text>

</View>

);

}

}

const styles = StyleSheet.create({

container: {

flex: 1,

backgroundColor: '#fff',

alignItems: 'center',

justifyContent: 'center',

},

});

Notice that the header of this code block states the path to the file which contains
this code: code/weather/1/App.js.

This book is written with the expectation that you’ll also be looking at the
example code alongside the chapter. If you ever feel like you’re missing the context
for a code example, open up the full code file using your favorite text editor.

Introduction 5

For example, we often need to import libraries to get our code to run. In the early
chapters of the book we show these import statements, because it’s not clear where
the libraries are coming from otherwise. However, the later chapters of the book are
more advanced and they focus on key concepts instead of repeating boilerplate code
that was covered earlier in the book. If at any point you’re not clear on the context,
open up the code example on disk.

Getting Help

While we’ve made every effort to be clear, precise, and accurate you may find that
when you’re writing your code you run into a problem.

Generally, there are three types of problems:

• A “bug” in the book (e.g. something is explained incorrectly)
• A “bug” in our code
• A “bug” in your code

If you find an inaccuracy in our description of something, or you feel a concept isn’t
clear, email us! We want to make sure that the book is both accurate and clear.

Similarly, if you’ve found a bug in our code we definitely want to hear about it.

If you’re having trouble getting your own app working (and it isn’t our example
code), this case is a bit harder for us to handle. If you’re still stuck, we’d still love to
hear from you, and here some tips for getting a clear, timely response.

Emailing Us

If you’re emailing us asking for technical help, here’s what we’d like to know:

• What revision of the book are you referring to?
• What operating system are you on? (e.g. Mac OS X 10.8, Windows 95)
• Which chapter and which example project are you on?
• What were you trying to accomplish?

Introduction 6

• What have you tried already?
• What output did you expect?
• What actually happened? (Including relevant log output.)

The absolute best way to get technical support is to send us a short, self-contained
example of the problem. Our preferredway to receive this would be for you to send us
an Expo Snack link¹¹. Snack is an online code editor that let’s one quickly develop and
demo React Native components on the browser or an actual device without having
to set up a brand new project. We’ll explain Expo in more detail in the next chapter.

When you’ve written down these things, email us at rn@fullstack.io. We look
forward to hearing from you.

¹¹https://snack.expo.io/

https://snack.expo.io/
https://snack.expo.io/

Getting Started with React
Native
Weather App

In this chapter we’re going to build a weather application that allows the user to
search for any city and view its current forecast.

With this simple app we’ll cover some essentials of React Native including:

• Using core and custom components
• Passing data between components
• Handling component state
• Handling user input
• Applying styles to components
• Fetching data from a remote API

By the time we’re finished with this chapter, you’ll know how to get started by
building a basic application with local state management. You’ll have the foundation
you need to build a wide variety of your own React Native apps.

Here’s a screenshot of what our app will look like when it’s done:

Getting Started with React Native 8

The completed app

In this chapter, we’ll build an entire React Native application from scratch. We’ll talk
about how to set up our development environment and how to initialize a new React
Native application. We’ll also learn how Expo allows us to rapidly prototype and
preview our application on our mobile device. After covering some of the basics of
React Native, we’ll explore how we compose apps using components. Components
are a powerful paradigm for organizing views and managing dynamic data.

We’re about to touch on a wide variety of topics, like styling and data management.
This chapter will exhibit how all these topics fit together at a high-level. In subse-
quent chapters, we’ll dive deep into the concepts that we touch on here.

Code examples

This book is example-driven. Each chapter is set up as a hands-on tutorial.

We’ll be building apps from the ground up. Includedwith this book is a download that
contains completed versions of each app as well as each of the versions we develop

Getting Started with React Native 9

along the way (the “sample code.”) If you’re following along, we recommend you use
the sample code for copying and pasting longer examples or debugging unexpected
errors. If you’re not following along, you can refer to the sample code for more
context around a given code example.

The structure of the sample code for all the chapters in this book follows this pattern:

├── components/

├── App.js

├── 1/

│ ├── components/

│ └── App.js

├── 2/

│ ├── components/

│ └── App.js

├── 3/

│ ├── components/

│ └── App.js

// ...

At the top-level of the directory is App.js and components/. This is the code for the
completed version of the application. Inside the numbered folders (1/, 2/, 3/) are the
different versions of the app as we build it up throughout the chapter.

Here’s what a code example in this book looks like:

weather/1/App.js

render() {

return (

<View style={styles.container}>

<Text>Open up App.js to start working on your app!</Text>

</View>

);

}

Note that the title of the code block contains the path within the sample code where
you can find this example (weather/1/App.js).

Getting Started with React Native 10

JavaScript

This book assumes some JavaScript knowledge.

React Native uses Babel¹² as a JavaScript compiler to allow us to develop in the latest
version of JavaScript, regardless of what version the underlying platform supports.
To understand what we mean by JavaScript versions, you can refer to the Appendix.

We highlight some of JavaScript’s newer features in the Appendix. We reference the
appendix when relevant.

Starting the project

yarn

We can install all the required tools to begin our project by using yarn. yarn¹³ is a
JavaScript package manager – it automates the process of managing all the required
dependencies from npm, an online repository of published JavaScript libraries and
projects, in an application. This is done by defining all our dependencies in a single
package.json file.

You can refer to the documentation¹⁴ for instructions to install yarn for your
operating system. The documentation also explains how to install node¹⁵ as well.
In order to use the Expo CLI however, Node.js v6 or later is required.

Here’s a list of some commonly used yarn commands:

• yarn init creates a package.json file and adds it directly to our project.
• yarn installs all the dependencies listed in package.json into a local node_-
modules folder.

• yarn add new-package will install a specific package to our project as well as
include it as a dependency in package.json. Dependencies are packages needed
when we run our code.

¹²https://babeljs.io/
¹³https://yarnpkg.com
¹⁴https://yarnpkg.com/lang/en/docs/install
¹⁵https://nodejs.org/en/

https://babeljs.io/
https://yarnpkg.com/
https://yarnpkg.com/lang/en/docs/install
https://nodejs.org/en/
https://babeljs.io/
https://yarnpkg.com/
https://yarnpkg.com/lang/en/docs/install
https://nodejs.org/en/

Getting Started with React Native 11

• yarn add new-package --dev will install a specific package to our project as
well as include it as a development dependency in package.json. Development
dependencies are packages needed only during the development workflow.
They are not needed for running our application in production.

• yarn global add new-package will install the package globally, rather than
locally to a specific project. This is useful when we need to use a command line
tool anywhere on our machine.

If you’re already familiar with npm and have it installed, you may use
it instead of yarn and run its equivalent commands¹⁶. These tools both
manage dependencies specified in a package.json file. However, we find
that yarn results in signficantly more consistent builds when working with
React Native, so we recommend using yarn.

Watchman

Watchman¹⁷ is a file watching service that watches files and triggers actions when
they are modified. If you use macOS as your operating system, the Expo and React
Native documentation recommend installingWatchman for better performance. The
instructions to install the service can be found here¹⁸.

Expo

Expo¹⁹ is a platform that provides a number of different tools to build fully functional
React Native applications without having to write native code. If you’ve used Create
React App²⁰ before, you’ll notice similarities in that no build configuration is required
to get up and running.

Building an application also does not require using Xcode for iOS, or Android Studio
for Android. This means that developers can build native iOS applications without

¹⁶https://yarnpkg.com/lang/en/docs/migrating-from-npm/#toc-cli-commands-comparison
¹⁷https://facebook.github.io/watchman/
¹⁸https://facebook.github.io/watchman/docs/install.html#installing-on-os-x-via-homebrew
¹⁹https://expo.io/
²⁰https://github.com/facebookincubator/create-react-app

https://yarnpkg.com/lang/en/docs/migrating-from-npm/#toc-cli-commands-comparison
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/docs/install.html#installing-on-os-x-via-homebrew
https://expo.io/
https://github.com/facebookincubator/create-react-app
https://github.com/facebookincubator/create-react-app
https://yarnpkg.com/lang/en/docs/migrating-from-npm/#toc-cli-commands-comparison
https://facebook.github.io/watchman/
https://facebook.github.io/watchman/docs/install.html#installing-on-os-x-via-homebrew
https://expo.io/
https://github.com/facebookincubator/create-react-app

Getting Started with React Native 12

even owning a Mac computer. Using Expo is the easiest way to get started with React
Native and is recommended in the React Native documentation²¹.

Expo provides two local development tools that allow us to build, preview, share and
publish React Native projects:

• Expo client app: A client iOS/Android mobile application for previewing
projects.

• Expo CLI: A local development tool for building React Native projects with no
build configuration. This is done through Create React Native App, which is
merged directly with the CLI.

Including Native Code
The Expo CLI is not the only way to start a React Native application. If we need to
start a project with the ability to include native code, we’ll need to use the React
Native CLI instead. With this however, our application will require Xcode and
Android Studio for iOS and Android respectively.

Expo also provides a number of different APIs for device specific properties such as
contacts, camera and video. However, if we need to include a native iOS or Android
dependency that is not provided by Expo, we’ll need to eject from the platform
entirely. Ejecting an Expo application means we have full control of managing our
native dependencies, but we would need to use the React Native CLI from that
point on.

We’ll explore how to use React Native CLI and add native modules to a project
later on in this book.

https://facebook.github.io/react-native/docs/getting-started.html#installing-dependencies

Previewing with the Expo client

To develop and preview apps with Expo, we need to install its client iOS or Android
app²² to develop and run React Native apps on our device.

²¹https://facebook.github.io/react-native/docs/getting-started.html
²²https://github.com/expo/expo

https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html#installing-dependencies
https://facebook.github.io/react-native/docs/getting-started.html#installing-dependencies
https://facebook.github.io/react-native/docs/getting-started.html#installing-dependencies
https://github.com/expo/expo
https://github.com/expo/expo
https://facebook.github.io/react-native/docs/getting-started.html
https://github.com/expo/expo

Getting Started with React Native 13

Android

On your Android mobile device, install the Expo client on Google Play²³. You can
then select Scan QR code and scan this QR code once you’ve installed the app:

QR Code

If this QR code doesn’t work, we recommendmaking sure you have the latest version
of that Expo app installed, and that you’re reading the latest edition of this book.

Instead of scanning the QR code, you can also type the project URL,
exp://exp.host/@fullstackio/weather, inside of Expo to load the appli-
cation.

iOS

You can install the Expo client via the App Store²⁴. With an iOS device however,
there is no capability to scan a QR code. This means we’ll first need to build the final
app in order to preview it. We can do this by navigating to the weather/ directory in
the sample code folder and running the following commands:

cd weather

yarn

yarn start

This will start the React Native packager. Pressing e will allow you to send a link
to your device by SMS or e-mail (you’ll need to provide your mobile phone number

²³https://play.google.com/store/apps/details?id=host.exp.exponent
²⁴https://itunes.apple.com/us/app/expo-client/id982107779?mt=8

https://play.google.com/store/apps/details?id=host.exp.exponent
https://itunes.apple.com/us/app/expo-client/id982107779?mt=8
https://play.google.com/store/apps/details?id=host.exp.exponent
https://itunes.apple.com/us/app/expo-client/id982107779?mt=8

Getting Started with React Native 14

or email address). Once done, clicking the link will open the application in the Expo
client.

For the app to load on your physical device, you’ll need to make sure that your phone
is connected to the same local network as your computer.

Using a supported version

The Expo client app only supports the most recent 5 or 6 releases of Expo and React
Native. This book uses Expo SDK 36 (React Native version 0.61). If you’re reading this
book more than 6 months after the release date, you may receive an error indicating
the Expo version of your project is too old if you try to run your app in the Expo
client. You can upgrade to the latest version of Expo and React Native by referring
to the upgrade guide for your current version in the documentation²⁵.

Most of the time, updates don’t cause significant API changes. However, if you
purchased a digital copy of the book, we recommend you download an updated
version of the book just in case.

Preparing the app with the CLI

At this point, you should see the final application load successfully on your device.
Play around with the app for a few minutes to get a feel for it. Try searching for
different cities as well a location that doesn’t even exist.

If you plan on building the application as you read through the chapter, you’ll need to
create a brand new project. Once yarn is installed, let’s run the following command
to install the Expo CLI globally:

yarn global add expo-cli@3.11.7

The @3.11.7 specifies the version of expo-cli to install. It’s important to
lock in version 3.11.7 so that the version on your machine matches the
version used in this book.

We’ll call our application weather and can use the following command to get started:

²⁵https://docs.expo.io/versions/latest/workflow/upgrading-expo

https://docs.expo.io/versions/latest/workflow/upgrading-expo
https://docs.expo.io/versions/latest/workflow/upgrading-expo

Getting Started with React Native 15

expo init weather --template blank@sdk-36 --yarn

The CLI will take a few minutes to download and extract all the project files. We
used the --template option to specify that we want the blank template built with
Expo SDK 36. We used the --yarn option to use yarn instead of npm for installing
dependencies. Navigate to the weather directory once that command is finished to
boot the app:

cd weather

yarn start

Once the project has finished starting, you should see some information outputted
to the console.

Getting Started with React Native 16

With the packager running, scanning the QR code with an Android device or sending
a link directly to an iOS device using the e hotkey will allow you to preview the
application. It is important to remember that a device needs to be connected to the
same local network as the computer in order for this to work.

Secondly, a browser tab that renders Expo’s Developer Tools should have also opened
for you automatically.

Expo Developer Tools

With Expo DevTools, you can see outputted logs easier as well as perform a number
of actions, such as sending an email link, directly through its interface instead of
typing into the console if you prefer.

Open the application with your Android device by using the QR code or by sending
a link to your iOS device. Once it finishes loading, we should see the starting point:

Getting Started with React Native 17

Application

Getting Started with React Native 18

Running on a simulator

As we mentioned, using the Expo client app allows us to run our appli-
cation without using native tooling (Xcode for iOS, or Android Studio for
Android).

However if we happen to have the required build tools we can still run our
application in a virtual device or simulator:

• With a Mac, yarn run ios will start the development server and run
the application in an iOS simulator. We can also start the packager
separately with yarn start and press i to open the simulator.

• With the required Android tools²⁶, yarn run android will start the
application in an Android emulator. Similarly, pressing a when the
React Native packager is running will also boot up the emulator.

Running an application using an emulator/simulator can be useful to test
on different devices and screen sizes. It can also be quicker to update and
test code changes on a virtual device. However, it’s important to run your
application on an actual device at some point in order to get a better idea
of how exactly it looks and feels.

By default, the Expo CLI comes with live reload enabled. This means if you edit
and save any file, the application on your mobile device will automatically reload.
Moreover, any build errors and logs will be displayed directly in the terminal.

Let’s see what the directory structure of our app looks like. Open up a new terminal
window.

Navigate to this app:

cd weather

And then run ls -a to see all the contents of the directory:

ls -a

²⁶https://facebook.github.io/react-native/docs/getting-started.html

https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html

Getting Started with React Native 19

If you’re using PowerShell or another non-Unix shell, you can just run ls.

Although your output will look slightly different based on your operating system,
you should see all the files in your directory listed:

├── .expo/

├── assets/

├── node_modules/

├── .gitignore

├── .watchmanconfig

├── App.js

├── app.json

├── babel.config.js

├── package.json

Let’s go through each of these files:

• .expo/ contains files that define configurations for the Expo packager and for
device connection settings.

• .assets/ contains a few image assets by default. These are the app icon and
splash screen images.

• node_modules/ contains all third party packages in our application. Any new
dependencies and development dependencies go here.

• .gitignore is where we specify which files should be ignored by Git. We can
see that both the node_modules/ and .expo/ directories are already included.

• .watchmanconfig defines configurations for Watchman.
• App.js is where our application code lives.
• app.json is a configuration file that allows us to add information about our
Expo app. The list of properties that can be included in this file is listed in the
documentation²⁷. Examples of properties that can be changed here include the
app icon and splash screen.

²⁷https://docs.expo.io/versions/latest/workflow/configuration

https://docs.expo.io/versions/latest/workflow/configuration
https://docs.expo.io/versions/latest/workflow/configuration

Getting Started with React Native 20

• .babel.config.js allows us to define presets and plugins for configuring
Babel²⁸. As we mentioned previously, Babel is a transpiler that compiles newer
experimental JavaScript into older versions so that it stays compatible with
different platforms.

• package.json is where we provide information of the application to our
package manager as well as specify all our project dependencies.

package.json

Let’s take a closer look at the generated package.json file:

1 {

2 "main": "node_modules/expo/AppEntry.js",

3 "scripts": {

4 "start": "expo start",

5 "android": "expo start --android",

6 "ios": "expo start --ios",

7 "web": "expo start --web",

8 "eject": "expo eject"

9 },

10 "dependencies": {

11 "expo": "~36.0.0",

12 "react": "~16.9.0",

13 "react": "~16.9.0",

14 "react-native": "https://github.com/expo/react-native/archive/sdk-3\

15 6.0.0.tar.gz"

16 },

17 "devDependencies": {

18 "babel-preset-expo": "~8.0.0"

19 },

20 "private": true,

21 }

The scripts property contains all the commands needed to run the application.
yarn start, yarn run android, and yarn run ios allow us to start the application

²⁸https://babeljs.io/

https://babeljs.io/
https://babeljs.io/

Getting Started with React Native 21

development server and/or run on a virtual device or simulator. yarn run eject starts
the process of ejecting the application from the Expo toolchain. As we mentioned
earlier, this can be necessary if we need to include a React Native library that contains
native code or if we need to write native code ourselves.

The dependencies and devDependencies properties define the application and devel-
opment dependencies respectively. Expo, the React core library and the version of
React Native needed for this specific version of Expo are all included as dependencies.
babel-preset-expo, a Babel preset that contains a number of predefined Babel
plugins, is the only development dependency included by default.

The utils/ directory

If you look at the book’s sample code, you’ll note that every application has a utils/
directory. This directory contains helper functions that the application will use. You
don’t need to concern yourself with the details of these functions as they’re not
relevant to the chapter’s core concepts.

When we reach the point in the application’s development where we need to use a
utility provided by utils/, we’ll remind you to copy over that folder from the sample
code. You can also do this immediately after initializing each project.

Components

With newer versions of JavaScript, we can define objects with properties using
classes. React Native lets us use this syntax to create components. Let’s take a look
at a visual breakdown of the components in our application:

Getting Started with React Native 22

Component Structure

Wehave an App component that represents the entire screen and contains theweather
information displayed to the use. Inside of this component, we have a SearchInput

component that allows us to search for different cities.

App

App is the only component created with a default application using a blank template.
Let’s take a look at its file:

Getting Started with React Native 23

weather/1/App.js

1 import React from 'react';

2 import { StyleSheet, Text, View } from 'react-native';

3

4 export default class App extends React.Component {

5 render() {

6 return (

7 <View style={styles.container}>

8 <Text>Open up App.js to start working on your app!</Text>

9 </View>

10);

11 }

12 }

13

14 const styles = StyleSheet.create({

15 container: {

16 flex: 1,

17 backgroundColor: '#fff',

18 alignItems: 'center',

19 justifyContent: 'center',

20 },

21 });

Notice howwe have a class defined in our file named App that extends React.Component.
Using extends allows us to declare a class as a subclass of another class. In here, we’ve
defined App as a subclass of React.Component. This is how we specify a specific class
to be a component in our application.

If you’d like to learn more about how classes work in JavaScript, refer to
our Appendix.

We can also attach methods as properties to classes, and the same applies to
component classes in React Native. We can see we already have one for this
component, the render method:

Getting Started with React Native 24

weather/1/App.js

5 render() {

6 return (

7 <View style={styles.container}>

8 <Text>Open up App.js to start working on your app!</Text>

9 </View>

10);

11 }

What we see on our device when launching our device matches what we see
described in this method. The render() method is the only required method for
a React Native component. React Native uses the return value from this method to
determine what to render for the component.

When we use React Native, we represent different parts of our application as
components. This means we can build our app using different reusable pieces of
logic with each piece displaying a specific part of our UI. Let’s break down what we
already have in terms of components:

• Our entire application is rendered with App as our top-level component.
Although created automatically as part of setting up a new Expo CLI project,
this component is a custom component responsible for rendering what we need
in our application.

• The View component is used as a layout container.
• Within View, we use the Text component to display lines of text in our appli-
cation. Unlike App, both View and Text are built-in React Native components
that are imported and used in our custom component.

We can see that our App component uses and returns an HTML-like structure. This
is JSX, which is an extension of JavaScript that allows us to use an XML-like syntax
to define our UI structure.

JSX

When we build an application with React Native, components ultimately render
native views which are displayed on our device. As such, the render() method of a

Getting Started with React Native 25

component needs to describe how the view should be represented. In other words,
React Native allows us to describe a component’s iOS and Android representation in
JavaScript.

JSX was created to make the JavaScript representation of components easier to
understand. It allows us to structure components and show their hierarchy visually
in markup. Consider this JSX snippet:

<View>

<Text style={{ color: 'red' }}>

Hello, friend! I am a basic React Native component.

</Text>

</View>

In here, we’ve nested a Text component within a View component. Notice how we
use braces ({}) around an object ({ color: 'red' }) to set the style property value
for Text. In JSX, braces are a delimiter, signaling to JSX that what resides in-between
the braces is a JavaScript expression. The other delimiter is using quotes for strings,
like this:

<TextInput placeholder="This is a string" />

Even though the JSX above might look similar to HTML, it is actually just
compiled into JavaScript function calls (ex: React.createElement(View)).
For this reason, we need to import React at the top of any file that contains
JSX. You can refer to the Appendix for more detail.

During runtime React Native takes care of rendering the actual native UI
for each component.

Props

We use the imported Text component to wrap each line of text output for our App
component:

Getting Started with React Native 26

<Text>Open up App.js to start working on your app!</Text>

And we use the imported View component to wrap all the Text components:

<View style={styles.container}>

...

</View>

Props allow us to pass parameters to components to customize their features. Here,
View is used to layout the entire content of the screen. We only have a single prop
attached, style, that allows us to pass in style parameters to adjust how our View
component is rendered on our devices. Each built-in component provided by React
Native has its own set of valid props that we can use for customization.

If you’re familiar with HTML, it’s very similar. For example, in HTML, say you
wanted to insert an image named image.png. You’d specify an img tag with a src

attribute like this:

To give you an idea of the similarity, in React Native we can include images using
the Image component. We specify the location using the source prop:

<Image source={require('./image.png')}>

We’ll cover images in greater detail later.

Like our View component, many components in React Native accept a style prop.
Styling is a large topic that we explore throughout this book. However, we can take
a look at our styles object at the bottom of App.js and get an idea of how it works:

Getting Started with React Native 27

weather/1/App.js

14 const styles = StyleSheet.create({

15 container: {

16 flex: 1,

17 backgroundColor: '#fff',

18 alignItems: 'center',

19 justifyContent: 'center',

20 },

21 });

Web developers may recognize that this looks like CSS (Cascading Style Sheets)
which is used to style web pages. It’s important to note that styling in React Native
does not use CSS. However, React Native borrows a lot of styling nomenclature from
web development. Here, we specify that the text should be centered and that the
background color should be white (#fff).

If you’ve used CSS before, you’ll find styling in React Native very familiar.
If not, don’t worry! It’s easy to get the hang of it.

Specifically, styles.container has the attributes flex, alignItems and
justifyContent. These are used to position the View in the center of the
screen. React Native uses flexbox to layout and align items consistently on
different device sizes. We’ll go into more detail about how exactly flexbox
works in later chapters.

To build our weather app, we’ll start with layout and styling. Once we have some
of the essence of our weather app in place we can begin to explore strategies for
managing data.

As we saw in the completed version of the app, we want our app to display the
city, temperature, and weather conditions as separate text fields. Although we’ll
eventually interface with a weather API in order to retrieve actual data, we’ll begin
with hard-coding these values.

Getting Started with React Native 28

The completed app

Adding styles

To get a better handle on styling, let’s try adding an object with a color attribute to
one of the text fields:

<View style={styles.container}>

<Text style={{ color: 'red' }}>

Open up App.js to start working on your app!

</Text>

</View>

Getting Started with React Native 29

Note that the outer-most set of brackets above are delimiters enclosing our
JavaScript statement. Inside of the delimiters is a JavaScript object. In React
Native, if the object is small enough it’s common to just write it all on one
line.

However, the double brackets ({{}}) might be confusing. Here’s another
way of writing the same component:

const style = { color: 'red' };

return (

<View style={styles.container}>

<Text style={style}>

Open up App.js to start working on your app!

</Text>

Save App.js. We can see our style applied once the application reloads:

Getting Started with React Native 30

As we mentioned previously, live reload is enabled by default in Expo.
This means that with any change to the code, the application will reload
immediately. If you happen to not see any changes reflected as soon
as you save the file, you may have to check to see if this is enabled.
The documentation²⁹ explains how to open up the developer menu and
enable/disable the feature.

Although we can style our entire component this way, a lot of inline styles (or
style attributes defined directly within the delimeter of the style prop) used in a
component can make things harder to read and digest.

We can solve this by leveraging React Native’s StylesheetAPI to separate our styles
from our component. With Stylesheet, we can create styles with attributes similar
to CSS stylesheets. We can see that Stylesheet is already imported at the top of the
file. It’s used to declare our first style, styles.container, which we use for View. We
can add a new style called red to our styles:

²⁹https://docs.expo.io/versions/latest/guides/up-and-running.html#cant-see-your-changes

https://docs.expo.io/versions/latest/guides/up-and-running.html#cant-see-your-changes
https://docs.expo.io/versions/latest/guides/up-and-running.html#cant-see-your-changes

Getting Started with React Native 31

const styles = StyleSheet.create({

container: {

flex: 1,

backgroundColor: '#fff',

alignItems: 'center',

justifyContent: 'center',

},

red: {

color: 'red',

},

});

We’ll then have Text use this style:

<View style={styles.container}>

<Text style={styles.red}>

Open up App.js to start working on your app!

</Text>

</View>

If we save our file and take a look at our app, we can see that the end result is the
same.

Now let’s add some appropriate styles and text fields in order to display someweather
data for a location. To add multiple styles to a single component, we can pass in an
array of styles:

Getting Started with React Native 32

weather/2/App.js

17 <Text style={[styles.largeText, styles.textStyle]}>

18 San Francisco

19 </Text>

20 <Text style={[styles.smallText, styles.textStyle]}>

21 Light Cloud

22 </Text>

23 <Text style={[styles.largeText, styles.textStyle]}>24°</Text>

It is important to mention that when passing an array, the styles at the end of the
array take precedence over earlier styles, in case of any repeated attributes. We can
see that we’re referencing three new styles; textStyle, smallText, and largeText.
Let’s define these within our styles object:

weather/2/App.js

36 const styles = StyleSheet.create({

37 container: {

38 flex: 1,

39 backgroundColor: '#fff',

40 alignItems: 'center',

41 justifyContent: 'center',

42 },

43 textStyle: {

44 textAlign: 'center',

45 fontFamily:

46 Platform.OS === 'ios' ? 'AvenirNext-Regular' : 'Roboto',

47 },

48 largeText: {

49 fontSize: 44,

50 },

51 smallText: {

52 fontSize: 18,

53 },

Getting Started with React Native 33

• textStyle specifies an alignment (center) as well as the fontFamily. Notice
howwe use Platform to define platform specific fonts for both iOS andAndroid.
We do this because both operating systems provide a different set of native
fonts.

• smallText and largeText both specify different font sizes.

Platform is a built-in React Native API. We’ll need to make sure to import it:

import { StyleSheet, Text, View, Platform } from 'react-native';

Let’s take a look at our application now:

Styled Text

Platform specific properties

The Platform API allows us to conditionally apply different styles or properties in
our component based on the device’s operating system. The OS attribute of the object
returns either ios or android depending on the user’s device.

Getting Started with React Native 34

Although this is a relatively simple way to apply different properties in our appli-
cation based on the user’s device, there may be scenarios where we may want our
component to be substantially different between operating systems.

We can also use the Platform.selectmethod that takes the operating system as keys
within an object and returns the correct result based on the device:

1 textStyle: {

2 textAlign: 'center',

3 ...Platform.select({

4 ios: {

5 fontFamily: 'AvenirNext-Regular',

6 },

7 android: {

8 fontFamily: 'Roboto',

9 },

10 }),

11 },

Separate files

Instead of applying conditional checks using Platform.OS a number times through-
out the entire component file, we can also leverage the use of platform specific
files instead. We can create two separate files to represent the same component each
with a different extension: .ios.js and .android.js. If both files export the same
component class name, the React Native packager knows to choose the right file
based on the path extension. We’ll dive deeper into platform specific differences later
in this book.

Text input

We now have text fields that display the location, weather condition, and tempera-
ture. The next thing we need to do is provide some sort of input to allow the user to
search for a specific city. Again, we’ll continue using hardcoded data for now. We’ll
only begin using an API for real data once we have all of our components in place.

Getting Started with React Native 35

React Native provides a built-in TextInput component that we can import into our
component that allows us to accept user input. Let’s include it within our View

container underneath the Text components (make sure to import it as well!):

weather/2/App.js

<Text style={[styles.largeText, styles.textStyle]}>

San Francisco

</Text>

<Text style={[styles.smallText, styles.textStyle]}>

Light Cloud

</Text>

<Text style={[styles.largeText, styles.textStyle]}>24°</Text>

<TextInput

autoCorrect={false}

placeholder="Search any city"

placeholderTextColor="white"

style={styles.textInput}

clearButtonMode="always"

/>

TextInput here is being referenced using a self-closing tag (<TextInput
/>). JSX allows us to use this shorthand version instead of an opening and
closing tag (<TextInput></TextInput>) when a component has no children
elements nested within.

There are a number of props associated with TextInput that we can use. We’ll cover
the basics here but go into more detail about them in the “Core Components” chapter.
Here we’re specifying a placeholder, its color, as well as a style for the component
itself. Let’s create its style object, textInput, underneath our other styles:

Getting Started with React Native 36

weather/2/App.js

smallText: {

fontSize: 18,

},

textInput: {

backgroundColor: '#666',

color: 'white',

height: 40,

width: 300,

marginTop: 20,

marginHorizontal: 20,

paddingHorizontal: 10,

alignSelf: 'center',

},

As we mentioned previously, all the attributes that we provide styles with in React
Native are extremely similar to how we would apply them using CSS. Now let’s take
a look at our application:

Getting Started with React Native 37

Text Input

We can see that the text input has a default underline on Android. We’ll go over how
to remove this in a bit.

We’ve also specified the clearButtonMode prop to be always. This shows a button on
the right side of the input field when characters are inserted that allows us to clear
the text. This is only available on iOS.

Text Input Clear Button

We can now type into the input field!

Getting Started with React Native 38

If you’re using the iOS simulator, you can connect your hardware keyboard
and use that with any input field. This can be done with Shift + ⌘ + K or
going to Hardware -> Keyboard -> Connect Hardware Keyboard

With this enabled, the software keyboard may not show by default. You
can toggle this by pressing ⌘ + K or going to Hardware -> Keyboard ->

Toggle Software Keyboard

Now every time you click an input field, the software keyboard will display
exactly how it would if you were using a real device and you can type using
your hardware keyboard.

However one thing you may have noticed is that when you focus on the input field
with a tap, the keyboard pops up and covers it on Android and comes quite close on
iOS:

Keyboard

Since the virtual keyboard can cover roughly half the device screen, this is a common
problem that occurs when using text inputs in an application. Fortunately, React

Getting Started with React Native 39

Native includes KeyboardAvoidingView, a component that solves this problem by
allowing us to adjust where other components render in relation to the virtual
keyboard. Let’s import and use this component instead of View:

weather/2/App.js

render() {

return (

<KeyboardAvoidingView

style={styles.container}

behavior="height"

>

<Text style={[styles.largeText, styles.textStyle]}>

San Francisco

</Text>

<Text style={[styles.smallText, styles.textStyle]}>

Light Cloud

</Text>

<Text style={[styles.largeText, styles.textStyle]}>24°</Text>

<TextInput

autoCorrect={false}

placeholder="Search any city"

placeholderTextColor="white"

style={styles.textInput}

clearButtonMode="always"

/>

</KeyboardAvoidingView>

);

}

Notice that KeyboardAvoidingView accepts a behavior prop with which we can
customize how the keyboard adjusts. It can change its height, position or bottom
padding in relation to the position of the virtual keyboard. Here, we’ve specified
height.

And finally, it’s important to double check our imports to make sure we have
everything that we’re using:

Getting Started with React Native 40

weather/2/App.js

1 import React from 'react';

2 import {

3 StyleSheet,

4 Text,

5 KeyboardAvoidingView,

6 Platform,

7 TextInput,

8 } from 'react-native';

Now tapping the text input will shift our component text and input fields out of the
way of the software keyboard.

Keyboard Avoiding View

Getting Started with React Native 41

Custom components

So far, we’ve explored how to add styling into our application, and we’ve included
some built-in components into our main App component. We use View as our
component container and import Text and TextInput components in order to display
hardcoded weather data as well as an input field for the user to change locations.

It’s important to re-iterate that React Native is component-driven. We’re already
representing our application in terms of components that describe different parts of
our UI without too much effort, and this is because React Native provides a number
of different built-in components that you can use immediately to shape and structure
your application.

However, as our application begins to grow, it’s important to begin thinking of how
it can further be broken down into smaller and simpler chunks. We can do this by
creating custom components that contain a small subset of our UI that we feel fits
better into a separate, distinct component file. This is useful in order to allow us to
further split parts of our application into something more manageable, reusable and
testable.

Although our application in its current state isn’t extremely large or unmanageable,
there’s still some room for improvement. The first way we can refactor our compo-
nent is to move our TextInput into a separate component to hide its implementation
details from the main App component. Let’s create a components directory in the root
of the application with the following file:

├── components/

- SearchInput.js

All the custom components we create that we use in our main App component will
live inside this directory. For more advanced apps, we might create directories within
components to categorize them more specifically. Since this app is pretty simple, let’s
use a flat components directory.

The SearchInputwill be our first custom component so let’s move all of our code for
TextInput from App.js to SearchInput.js:

Getting Started with React Native 42

weather/3/components/SearchInput.js
1 import React from 'react';

2 import { StyleSheet, TextInput, View } from 'react-native';

3

4 export default class SearchInput extends React.Component {

5 render() {

6 return (

7 <View style={styles.container}>

8 <TextInput

9 autoCorrect={false}

10 placeholder={this.props.placeholder}

11 placeholderTextColor="white"

12 underlineColorAndroid="transparent"

13 style={styles.textInput}

14 clearButtonMode="always"

15 />

16 </View>

17);

18 }

19 }

20

21 const styles = StyleSheet.create({

22 container: {

23 height: 40,

24 width: 300,

25 marginTop: 20,

26 backgroundColor: '#666',

27 marginHorizontal: 40,

28 paddingHorizontal: 10,

29 borderRadius: 5,

30 },

31 textInput: {

32 flex: 1,

33 color: 'white',

34 },

35 });

Getting Started with React Native 43

Let’s break down what this file contains:

• We export a component named SearchInput.
• This component accepts a placeholder prop.
• This component returns a React Native TextInput with a few of its properties
specified wrapped within a View.

• We’ve applied the appropriate styles to our view container including a borderRadius.
• We also added underlineColorAndroid="transparent" to remove the dark
underline that shows by default on Android.

this is a special keyword in JavaScript. The details about this are a bit
nuanced, but for the purposes of the majority of this book, this will
be bound to the React Native component class. So, when we write
this.props inside the component, we’re accessing the props property on
the component. When we diverge from this rule in later sections, we’ll
point it out.

For more details on this, check out this page on MDN³⁰.

Custom props

As you may recall, in App.js we set the placeholder prop for TextInput to “Search
any city.” That renders the text input with a placeholder:

For SearchInput, we could hardcode a string again for placeholder. But what if
we wanted to add a search input elsewhere in our application? It would be nice if
placeholder was customizable.

³⁰https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this

Getting Started with React Native 44

Earlier in this chapter, we explored how we can use props with a number of built-in
components in order to customize their features. We can also create props for custom
components that we build as well.

That’s whatwe do here in SearchInput. The component accepts the prop placeholder.
In turn, SearchInput uses this value to set the placeholder prop on TextInput.

The way data flows from parent to child in React Native is through props. When a
parent renders a child, it can send along props the child depends on. A component
can access all its props through the object this.props. If we decide to pass down
the string "Type Here" as the placeholder prop, the this.props object will look like
this:

{ "placeholder": "Type Here" }

In here, we’ll set up App to render SearchInputwhich means that App is the parent of
SearchInput. Our parent component will be responsible for passing down the actual
value of placeholder.

We’re getting somewhere interesting now. We’ve set up a custom SearchInput

component and by building it to accept a placeholder prop, we’re already setting
it up to be configurable. Based on what it receives, it can render any placeholder
message that we’d like.

Importing components

In order to use SearchInput in App, we need to import the component first. We can
remove the TextInput logic from App.js and have App use SearchInput instead:

Getting Started with React Native 45

weather/3/App.js

import React from 'react';

import {

StyleSheet,

Text,

KeyboardAvoidingView,

Platform,

} from 'react-native';

import SearchInput from './components/SearchInput';

export default class App extends React.Component {

render() {

return (

<KeyboardAvoidingView

style={styles.container}

behavior="height"

>

<Text style={[styles.largeText, styles.textStyle]}>

San Francisco

</Text>

<Text style={[styles.smallText, styles.textStyle]}>

Light Cloud

</Text>

<Text style={[styles.largeText, styles.textStyle]}>24°</Text>

<SearchInput placeholder="Search any city" />

</KeyboardAvoidingView>

);

}

}

Bymoving the entire TextInput details into a separate component called SearchInput,
we’ve made sure to not have any of its specific implementation details showing in

Getting Started with React Native 46

the parent component anymore. We can also remove the text input’s styling defined
within the styles object.

There’s no specific answer to how often we should isolate different UI logic into
separate custom components. React Native was built in order to allow us to lay out
our entire application in terms of self-contained components, and that means we
should separate parts of our application into distinct units with custom functionality
attached to them. This allows us to build a more manageable application that’s
easier to control and understand. We’ve isolated knowledge of our search input to
the component SearchInput and we’ll continue to isolate specific pieces of our app
throughout this chapter.

It’s common to separate your imports into two groups: imports from
dependencies, and imports from other files in your project. That’s why we
put a blank line above SearchInput. This comes down to personal style
preference.

Background image

As we saw in the photo of the completed version of the app at the beginning of
this chapter, we can make our application more visually appealing by displaying a
background image that represents the current weather condition.

In this book’s sample code, we’ve included a number of images for various weather
conditions. If you inspect the weather/assets directory, you’ll find images like
clear.png, hail.png, and showers.png.

If you’re following along, copy these two folders over from the sample code into your
project:

1. weather/assets
2. weather/utils

We mentioned earlier that we’ve included a utils/ folder for each project
in the book’s sample code. This folder contains helper functions that we’ll
use below.

Getting Started with React Native 47

If you’re on macOS or Linux, you can use cp -r to copy directories:

cp -r weather/{assets,utils} ~/react-native-projects/weather/

With the assets and utils folders copied over, let’s update our App component:

weather/4/App.js

import React from 'react';

import {

StyleSheet,

View,

ImageBackground,

Text,

KeyboardAvoidingView,

Platform,

} from 'react-native';

import getImageForWeather from './utils/getImageForWeather';

import SearchInput from './components/SearchInput';

export default class App extends React.Component {

render() {

return (

<KeyboardAvoidingView

style={styles.container}

behavior="height"

>

<ImageBackground

source={getImageForWeather('Clear')}

style={styles.imageContainer}

imageStyle={styles.image}

>

<View style={styles.detailsContainer}>

Getting Started with React Native 48

<Text style={[styles.largeText, styles.textStyle]}>

San Francisco

</Text>

<Text style={[styles.smallText, styles.textStyle]}>

Light Cloud

</Text>

<Text style={[styles.largeText, styles.textStyle]}>

24°

</Text>

<SearchInput placeholder="Search any city" />

</View>

</ImageBackground>

</KeyboardAvoidingView>

);

}

}

In this component, we’re importing a getImageForWeather method from our utils
directory which returns a specific image from the assets directory depending on a
weather type.

For example, getImageForWeather('Clear') returns the following image:

Getting Started with React Native 49

Feel free to peek into the implementation details of any function we use
from the utils directory to get a better idea of how it works.

We also import React Native’s built-in ImageBackground component. Let’s take a
closer look at how we’re making use of it in our render method:

weather/4/App.js

render() {

return (

<KeyboardAvoidingView

style={styles.container}

behavior="height"

>

<ImageBackground

source={getImageForWeather('Clear')}

style={styles.imageContainer}

Getting Started with React Native 50

imageStyle={styles.image}

>

Conceptually, the ImageBackground component is a View with an Image nested
within.

The source prop accepts an image location, which we’ve set to:

getImageForWeather('Clear') .

We know this will always return the image displayed above. ImageBackground also
uses the prop style for styling the View container and the prop imageStyle for styling
the image itself. Let’s add two new styles and modify the container style:

weather/4/App.js

const styles = StyleSheet.create({

container: {

flex: 1,

backgroundColor: '#34495E',

},

imageContainer: {

flex: 1,

},

image: {

flex: 1,

width: null,

height: null,

resizeMode: 'cover',

},

Defining component styles with a flex attribute mean that they will expand to
take up any room remaining in their parent container in relation to any sibling
components. They share this space in proportion to their defined flex values. Since
ImageBackground is the only nested element within KeyboardAvoidingView, setting
imageContainer to flex: 1means that this element will fill up the entire space of its
parent component. We’ve removed justifyContent and alignItems from container

so that the ImageBackground can take up the entire device screen.

Getting Started with React Native 51

We also used flex: 1 to style the actual image itself, image, to make sure it takes
up the entire space of its parent container. With images in particular, the component
will fetch and use the actual width and height of the source image by default. For this
reason, we’ve also set its height and width attribues to null so that the dimensions of
the image fit the container instead. The resizeMode attribute allows us to define how
the image is resized when the Image element does not match its actual dimensions.
Setting this attribute to cover means that the image will scale uniformly until it is
equal to the size of the component.

The “Core Components” chapter will dive deeper into how flexbox, layout,
and the Image component work in React Native

We also wrapped all of our Text elements and SearchInput within a view container
styled with detailsContainer:

weather/4/App.js

<View style={styles.detailsContainer}>

<Text style={[styles.largeText, styles.textStyle]}>

San Francisco

</Text>

<Text style={[styles.smallText, styles.textStyle]}>

Light Cloud

</Text>

<Text style={[styles.largeText, styles.textStyle]}>

24°

</Text>

<SearchInput placeholder="Search any city" />

</View>

Now let’s set up its style:

Getting Started with React Native 52

weather/4/App.js

detailsContainer: {

flex: 1,

justifyContent: 'center',

backgroundColor: 'rgba(0,0,0,0.2)',

paddingHorizontal: 20,

},

Here, we’re ensuring the container within ImageBackground also fills up the entire
space of its parent component as well as have its items aligned at the center of
the screen. We also add a semi-transparent overlay to our image by setting the
backgroundColor of this component.

The last thing we’ll need to do here is change our Text elements to white instead of
black to show more clearly with a background image:

weather/4/App.js

textStyle: {

textAlign: 'center',

fontFamily:

Platform.OS === 'ios' ? 'AvenirNext-Regular' : 'Roboto',

color: 'white',

},

Try it out

Save the file and take a look at our app. We should now see the background image
displayed!

Modifying location

The steps we’ve taken so far are quite common when starting React Native applica-
tions. We hardcode all our data, organize our app into components, and get an idea
of the visual layout as well as how it breaks down into components.

Getting Started with React Native 53

However, our app really isn’t very useful at this moment. If we take a look at our
SearchInput component for instance, we can type anything into the input field but
nothing actually happens as a result. We need to find a way to track changes made
to the component and store that information somewhere. In other words, we need
some piece of mutable data that updates whenever the user changes or submits the
input field.

Instead of having SearchInput not actually manage any data that represents the text
inputted by the user, let’s pass in a prop for it called location to reflect what the user
has inputted into the text input field:

render() {

const location = 'San Francisco';

return (

<KeyboardAvoidingView

style={styles.container}

behavior="height"

>

<ImageBackground

source={getImageForWeather('Clear')}

style={styles.imageContainer}

imageStyle={styles.image}

>

<View style={styles.detailsContainer}>

<Text style={[styles.largeText, styles.textStyle]}>

{location}

</Text>

<Text style={[styles.smallText, styles.textStyle]}>

Light Cloud

</Text>

<Text style={[styles.largeText, styles.textStyle]}>

24°

</Text>

<SearchInput placeholder="Search any city" />

</View>

Getting Started with React Native 54

</ImageBackground>

</KeyboardAvoidingView>

The reason we want to pass in the property that contains our location data is we
need a way for our child component to modify that field and communicate back up to
our container App component. Notice howwe’ve moved the static string for location
into a separate constant which we pass down to SearchInput. We’ve instantiated
it as San Francisco so that it can show as the first location when the user loads
the application. The next thing we just need to do is make sure that this location
constant is updated when the user actually changes the field in SearchInput:

export default class SearchInput extends React.Component {

handleChangeText(newLocation) {

// We need to do something with newLocation

}

render() {

return (

<TextInput

autoCorrect={false}

placeholder={this.props.placeholder}

placeholderTextColor="white"

underlineColorAndroid="transparent"

style={styles.textInput}

clearButtonMode="always"

onChangeText={this.handleChangeText}

/>

);

}

}

So what did we just do? We’ve just added onChangeText as a new prop to our
TextInput component. Notice that we don’t pass in a specific object or property,
but a function instead:

Getting Started with React Native 55

onChangeText={this.handleChangeText}

This method is invoked everytime the text within the input field is changed. A
number of built-in components provided by React Native include event-driven props
which we can attach specific methods to. We’ll explore more throughout this book.

With onChangeText, our TextInput returns the changed text as an argument which
we’re attempting to pass into a separate method called handleChangeText. Currently
our method is blank and we’ll explore how we can complete it in a bit.

In React Native, we need to pass in functions when we want to handle certain
events related to the component being referenced. For the TextInput compo-
nent, onChangeText is set to fire every single time the text within the input field
has changed. We need to “listen” to this specific event in our child component
(TextInput) so that it can notify our parent component (SearchInput) to respond
to this event. To do this, we pass in a function that calls another function, or in other
words, a callback.

This is a common pattern when building components which need to notify a parent
component of some event. Unfortunately with the way we’ve just set it up, it
wouldn’t work in this example. This is because the function handleChangeText has
a different local scope than the component instance. We can work around this by
binding our function to the correct context of its this object.

<TextInput

placeholder={placeholder}

placeholderTextColor="white"

underlineColorAndroid="transparent"

style={styles.textInput}

clearButtonMode="always"

onChangeText={this.handleChangeText.bind(this)}

/>

Now this might seem okay for the current context, but it can quickly become
unwieldy if we build our components with bind statements in each event handler.
One reason why is if we wanted to use handleChangeText in multiple different sub-
components for example, wewould have tomake sure to bind it to the correct context

Getting Started with React Native 56

every single time. To help solve this, we can take care of handling our event using
property initializers:

export default class SearchInput extends React.Component {

handleChangeText = (newLocation) => {

// We need to do something with newLocation

}

render() {

return (

<TextInput

autoCorrect={false}

placeholder={this.props.placeholder}

placeholderTextColor="white"

underlineColorAndroid="transparent"

style={styles.textInput}

clearButtonMode="always"

onChangeText={this.handleChangeText}

/>

);

}

}

This allows us to declare the member methods as arrow functions:

handleChangeText = (newLocation) => {

// We need to do something with newLocation

}

And we pass the method name to the prop and nothing more:

onChangeText={this.handleChangeText}

Getting Started with React Native 57

Property Initializers

Supported by Babel³¹, property initializers are still in the proposal phase
and have not yet been slated for adoption in future JavaScript versions.
Although this pattern is used quite often in many React and React Native
applications, it is important to keep in mind that it is still experimental
syntax.

For more information on the different ways to handle events in React
Native, refer to the Appendix.

Now that we’ve set up our callback correctly, let’s modify handleChangeText to
change our text prop in order to change the data to match what the user is typing:

handleChangeText = (newLocation) => {

this.props.location = newLocation;

};

Let’s run our application and try typing into the TextInput field. You’ll immediately
notice that the first location that shows is San Francisco, so we know that the text
prop is being passed down successfully!

However, if we type anything into our TextInput, you’ll notice nothing happens.
Changing the text within the input field does not actually update the parent location
property and from the way we’ve designed our component logic, it looks like it
should. This is because this.props, which is referenced in SearchInput, is actually
owned by App and not the child component, SearchInput. A component’s props
are immutable and create a one-way data pipeline from parent to children.

We have a bit of a problem. We need to find a way to:

• store local data in our child component, SearchInput, that represents the value
in the input field

• track changes to the search input field as it’s updated by the user
• notify our parent component, App, whenever our location changes

This is where we can use a component’s state.

³¹https://babeljs.io/docs/plugins/transform-class-properties/

https://babeljs.io/docs/plugins/transform-class-properties/
https://babeljs.io/docs/plugins/transform-class-properties/

Getting Started with React Native 58

Storing local data

Let’s modify our SearchInput component once more. Currently the text input within
the component does nothing, so let’s add some local component state to control actual
data.We can do this by adding a constructormethod to the component.We can then
initialize the component’s state within this method:

weather/5/components/SearchInput.js

export default class SearchInput extends React.Component {

constructor(props) {

super(props);

this.state = {

text: '',

};

}

We can use the constructormethod to to initialize our component-specific data, or
state. We do this here because this method fires before our component is mounted
and rendered. Here, we defined our state object to only contain a text property:

Remember, components in React Native are extended from
React.Component to create derived classes. super() is required in
derived classes in order to reference this within the constructor.

Much like howwe can access the component’s props with this.props, we can access
the component’s state via this.state. For example if we wanted to output our state
property in a single Text component, we could do this:

Getting Started with React Native 59

export default class HiThere extends React.Component {

constructor(props) {

super(props);

this.state = {

text: 'Hi there!',

};

}

render() {

return <Text>{this.state.text}</Text>;

}

}

This component would now render 'Hi there!' since that’s how we defined our
state.text property in our constructor. For our current component however, our
text property in state will be used to define the text typed by the user into the input
field. Let’s now modify our component’s render method to allow for this:

weather/5/components/SearchInput.js

render() {

const { placeholder } = this.props;

const { text } = this.state;

return (

<View style={styles.container}>

<TextInput

autoCorrect={false}

value={text}

placeholder={placeholder}

placeholderTextColor="white"

underlineColorAndroid="transparent"

style={styles.textInput}

clearButtonMode="always"

onChangeText={this.handleChangeText}

onSubmitEditing={this.handleSubmitEditing}

/>

Getting Started with React Native 60

</View>

);

}

The first thing we did was destructure the component props and state objects:

weather/5/components/SearchInput.js

render() {

const { placeholder } = this.props;

const { text } = this.state;

Destructuring
Instead of using this.props.placeholder and this.state.text directy,
we destructured both objects at the beginning of our render method into
individual variables (text and placeholder). Please refer to the Appendix
for more details on destructuring assignments.

We then make sure that the TextInput placholder prop is still accepting our
props.placeholder attribute. We also pass state.text to a value prop:

weather/5/components/SearchInput.js

<TextInput

autoCorrect={false}

value={text}

placeholder={placeholder}

placeholderTextColor="white"

underlineColorAndroid="transparent"

style={styles.textInput}

clearButtonMode="always"

onChangeText={this.handleChangeText}

onSubmitEditing={this.handleSubmitEditing}

/>

Getting Started with React Native 61

The value prop is responsible for the content showed in the input field. With this,
we now know whatever is displayed in input field will always represent our local
state.

We’ve also attached two additional props to our component, onChangeText and
onSubmitEditing with methods we haven’t set up yet.

Tracking changes to input

Let’s take a look at how onChangeText can allow us to update our state every time
the input field is changed. As we just did previously, we’re attaching a method to the
onChangeText prop of TextInput:

weather/5/components/SearchInput.js

onChangeText={this.handleChangeText}

Previously, we set up a handleChangeText method that modifies our location prop
value when the user changes the text within the input. We quickly realized that
this didn’t work. This is because props are immutable and are always “owned”
by a component’s parent while state can be mutated and is “owned” by the
component itself. This is an extremely important pattern to remember while
building components with React Native.

This brings us to setState(), a method we can use to change our state correctly.
Let’s make use of this in our handleChangeText method which we can declare right
underneath our constructor:

weather/5/components/SearchInput.js

export default class SearchInput extends React.Component {

constructor(props) {

super(props);

this.state = {

text: '',

};

}

Getting Started with React Native 62

handleChangeText = text => {

this.setState({ text });

};

Shorthand property names
With later versions of JavaScript, we can define objects using shorthand
form where possible. Our handleChangeTextmethod can also be written in
a more explicit syntax:

handleChangeText = (text) => {

this.setState({ text: text });

};

Please refer to the Appendix for a little more detail on this concept.

Now we might be tempted to update our state by using this.state.text = text,
but this will not work. For all state modifications after the initial state we’ve defined
in our constructor, React provides components with the method setState() to do
this. In addition to mutating the component’s state object, this method triggers the
React component to re-render, which is essential after the state changes.

It’s good practice to initialize components with “empty” state as we’ve done in this
component. However, after our SearchInput component is initialized, we want to
update the state with data the user types into the text input. This is why we use the
text argument provided into our callback method as part of the onChangeText prop
and pass that into this.setState().

Never modify state outside of this.setState(). This function has impor-
tant hooks around state modification that we would be bypassing.

We discuss state management in detail throughout the book.

Notifying the parent component

So we’ve found a way to correctly store local state in our component that represents
the text within the search input and make sure that it updates as the user changes the

Getting Started with React Native 63

value.We still need to do onemore thingwhich is to notify our parent App component
when the user submits a new searched value. This is why we’ve attached a method
to the onSubmitEditing prop of TextInput:

weather/5/components/SearchInput.js

onSubmitEditing={this.handleSubmitEditing}

The idea here is we don’t necessarily want to communicate with our parent
component everytime the user changes the input field. That’s why onChangeText

is purely responsible for storing the latest typed input value into the local state
of the component. Fortunately, the TextInput component has an onSubmitEditing

prop which fires when the user submits the field and not just changes it. This
happens specifically when the user presses the action button of the virtual keyboard
in order to submit their input. This is where we would want to notify our container
component of the typed user data. Let’s take a look at how we can set up the
handleSubmitEditing function that we’re passing in:

weather/5/components/SearchInput.js

handleSubmitEditing = () => {

const { onSubmit } = this.props;

const { text } = this.state;

if (!text) return;

onSubmit(text);

this.setState({ text: '' });

};

In here, we check if this.state.text is not blank (which means the user has typed
something into the field), and if that’s the case:

1. Run an onSubmit function obtained from the component’s props. We pass
text as an argument here.

2. Clear the text property in state using this.setState()

Getting Started with React Native 64

We’ve seen how this.props can be used to pass information down from a parent
component to child and we’ve also seen how built-in components such as TextInput
can notify their parent component through callbacks in some of their props. Similarly,
we can create props in our custom components to do the exact same thing. In here,
we need SearchInput to communicate with the App component whenever the user
submits the input field. We do this because we want our parent component to handle
the event of the user typing and submitting a new city. This is why we have an
onSubmit prop here that gets fired.

The next thing we need to do is pass a method to the onSubmit prop of SearchInput
in App and handle the event:

weather/5/App.js

<SearchInput

placeholder="Search any city"

onSubmit={this.handleUpdateLocation}

/>

Let’s define local state for this component as well as the handleUpdateLocation

method:

weather/5/App.js

export default class App extends React.Component {

constructor(props) {

super(props);

this.state = {

location: 'San Francisco',

};

}

handleUpdateLocation = city => {

this.setState({

location: city,

});

};

Getting Started with React Native 65

We defined local state for this component with just a location property and have it
set to San Francisco. We do this to ensure that an initial location is shown when we
reload our application. We also included a handleUpdateLocationmethod that takes
in a parameter to change our location state. This method will fire everytime the user
submits the search input field because we pass this method as the onSubmit prop for
SearchInput.

Since we actually have “living” location data represented by what the user submits in
the input field, we can now display it in our first Text element instead of a hardcoded
string:

weather/5/App.js

render() {

const { location } = this.state;

return (

<KeyboardAvoidingView

style={styles.container}

behavior="height"

>

<ImageBackground

source={getImageForWeather('Clear')}

style={styles.imageContainer}

imageStyle={styles.image}

>

<View style={styles.detailsContainer}>

<Text style={[styles.largeText, styles.textStyle]}>

Try it out

If we type any city in the search input and press return, we’ll see the name of the
city being displayed immediately.

Getting Started with React Native 66

Component State

This shows that we’ve wired everything correctly!

We’ve sequenced each of our problems step by step and showed how props and state
differ when trying to pass and store component data. However, handleUpdateLocation
doesn’t really get real weather information and just updates the city name that’s
being displayed. We’ll wire it up to get actual weather data soon.

Architecting state

Wemay have already considered controlling all the location statewithin SearchInput
and not having to deal with passing information upwards to a container component.
There’s no specific answer to where each piece of state should live and it depends
on the type of application we’re building. This is a core concept of building React
Native applications and tools like Redux³² and MobX³³ aim to simplify this even
further by allowing you to manage the entire state of the application in a single

³²https://github.com/reactjs/redux
³³https://github.com/mobxjs/mobx

https://github.com/reactjs/redux
https://github.com/mobxjs/mobx
https://github.com/reactjs/redux
https://github.com/mobxjs/mobx

Getting Started with React Native 67

location. However, even when we decide to use state management libraries such as
these examples, we still need to spend time deciding on how we want to structure
our state logic.

In our current app, we need to have App know the location data in order to
display correct weather conditions. SearchInput doesn’t really need to store this
information without actually passing it up to the component that handles the
logic. The motivation behind keeping SearchInput simple is that we can leverage
React’s component-driven paradigm. We can re-use it in various places across our
application whenever we need a search input.

We can think of SearchInput as a component that provides presentational markup
and does not manage any real application data. Such components accept props
from parent components which specify the data a presentational component should
render. This parent container component also specifies behavior. If the lower level
presentational component has any interactivity — like our search input — it calls a
prop-function given to it by the parent. We’ll go into more detail about this important
pattern throughout this book.

Lifecycle methods

We’ve wired up how our components communicate with each other to have a new
location displayed immediately when the user submits the text input field. However,
you’ll notice that the city shows a blank string when the app first loads. We could
instantiate it with the name of an actual city instead but we know we want to be
getting actual weather information eventually. Although we haven’t set that up just
yet, the asynchronous action to fetch actual weather data for a city will be happening
in the handleUpdateLocation. Therefore it makes sense to call this method when our
component first loads. One thing we might be tempted to try is firing this method in
our constructor:

Getting Started with React Native 68

constructor(props) {

super(props);

this.state = {

location: '',

};

this.handleUpdateLocation('San Francisco');

}

However, firing off asynchronous requests in the constructor is typically an anti-
pattern. This is because the constructor is called before the component is first
mounted. As such, this method should usually only be used to initialize state and
bind methods.

Instead, we can make use of one of React Native’s lifecycle methods. Like the
name suggests, these methods allow you to access specific points in the lifecycle
of a component. The term lifecycle here applies to how React Native instantiates,
changes and destroys components. We can use lifecycle hooks to do something
when these functions are called during different phases of component rendering.

The most common lifecycle method used is the one that allows us to set component
data after the component is mounted – componentDidMount(). This method is
commonly used to trigger network requests to fetch data that the component would
need. To understand when this method fires, let’s add it to our component right after
our constructor with a console.log:

export default class App extends React.Component {

constructor(props) {

super(props);

this.state = {

location: 'San Francisco',

};

}

componentDidMount() {

console.log('Component has mounted!');

}

Getting Started with React Native 69

When we reload our application, we can see Component has mounted! outputted
directly to our terminal as soon as the component has mounted.

Debugging in React Native
If you’ve worked with JavaScript on the web, you may be familiar with
using console.log, console.warn or console.error to output messages to
the browser’s console for debugging purposes. Similarly, Expo allows us
to use these methods to output logs to our terminal. For more detail about
viewing logs, you can refer to the documentation³⁴.

Aside from logging, React Native also allows us to debug the JavaScript
code in our app using the Chrome Developer Tools. With Expo, we can do
this by pressing Debug Remote JS in the developer menu. You can refer to
the documentation³⁵ to learn more.

Now let’s update it to fire handleUpdateLocation:

weather/6/App.js

componentDidMount() {

this.handleUpdateLocation('San Francisco');

}

With this, we can remove San Francisco as our default location in state and set it
to an empty string.

export default class App extends React.Component {

constructor(props) {

super(props);

this.state = {

location: '',

};

}

³⁴https://docs.expo.io/versions/latest/guides/logging.html
³⁵https://docs.expo.io/versions/latest/guides/debugging.html

https://docs.expo.io/versions/latest/guides/logging.html
https://docs.expo.io/versions/latest/guides/debugging.html
https://docs.expo.io/versions/latest/guides/logging.html
https://docs.expo.io/versions/latest/guides/debugging.html

Getting Started with React Native 70

Since we’re using componentDidMount, we should still see San Francisco populated
in place of the text field as soon as we reload the app.

Although componentDidMount() allows us to create event listeners and
fetch network requests right after the component has rendered for the
first time, there are number of other lifecycle methods that React Native
provides. We’ll go through each of them throughout this book.

Networking

We’ve built all the components that make up the UI of our app and refined it to show
a nice background image for the user. As we mentioned previously, the approach
we’ve taken so far is a common pattern used when building brand new React Native
applications. We first organized our views using components and then introduced
some state and state management.

However, nobody will find our app useful unless it’s actually connected to real
data. When building a new mobile app, chances are we’ll need to communicate
with a server. Communicating with a server is a crucial component of most mobile
applications.

For the purpose of this application, we’ll use the MetaWeather³⁶ API to fetch real
weather information. MetaWeather is a weather data aggregator that calculates the
most likely outcome from predictions of different forecasters. They provide an API³⁷
that provides this information over a set of different endpoints:

1. Location search (/api/location/search/) which allows us to search for a
particular city

2. Location weather information (/api/location/{woeid}) which provides a 5
day forecast for a certain location

3. Location day which provides (/api/location/{woeid}/{date}/) forecast his-
tory and information for a particular day and location

³⁶https://www.metaweather.com/
³⁷https://www.metaweather.com/api/

https://www.metaweather.com/
https://www.metaweather.com/api/
https://www.metaweather.com/
https://www.metaweather.com/api/

Getting Started with React Native 71

WOEID, or Where On Earth ID, is a location identifier that allows us
find details about a specific location. For more detail on how exactly the
MetaWeather API works, feel free to take a closer look at the documenta-
tion³⁸.

Now that we have a basic understanding of how state and props control the flow
of data between different components, let’s move on to using this API to render real
weather data. It’s possible to put API calls directly in our componentmethods, but it’s
usually a good idea to abstract that logic away in its own file. In the utils directory,
we’ve set up two separate API calls in api.js:

• fetchLocationId returns an array of locations based on a search query
• fetchWeather returns weather details about a specific location using a location
identifier known as Where On Earth ID³⁹

The combination of both calls will allow us to search for a city and retrieve its
weather information. Feel free to open the file and take a look at how these methods
work if you’re interested.

Async Functions

Callbacks and Promises are two ways to define asynchronous code in
JavaScript. Built on top of promises, async functions are a newer syntax
that allows us to define asynchronous methods in a synchronous manner.
Both methods we’ve set up in api.js use this syntax.

Although supported by Babel, it is still in draft proposal stage and will most
likely be ratified into a future JavaScript release. Here’s theMDN⁴⁰ resource
if you happen to be interested in learning more about this syntax further.

When building components that fetch information over the network, it’s inevitable
that the user will have to wait a certain period of time before the data is retreived.
Withmost applications, it makes sense to show a loading indicator of some sort so the
user knows they have to wait a bit before they can see the content. Fortunately, React

³⁸https://www.metaweather.com/api/
³⁹https://developer.yahoo.com/geo/geoplanet/guide/concepts.html
⁴⁰https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

https://www.metaweather.com/api/
https://www.metaweather.com/api/
https://developer.yahoo.com/geo/geoplanet/guide/concepts.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://www.metaweather.com/api/
https://developer.yahoo.com/geo/geoplanet/guide/concepts.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

Getting Started with React Native 72

Native provides a built-in ActivityIndicator component that displays a circular
loading spinner. Let’s update our root App component beginning with some new
imports:

weather/6/App.js

import React from 'react';

import {

StyleSheet,

View,

ImageBackground,

Text,

KeyboardAvoidingView,

Platform,

ActivityIndicator,

StatusBar,

} from 'react-native';

import { fetchLocationId, fetchWeather } from './utils/api';

import getImageForWeather from './utils/getImageForWeather';

import SearchInput from './components/SearchInput';

We’ve added the following imports:

• ActivityIndicator is a built-in component that displays a circular loading
spinner. We’ll use it when data is being fetched from the network

• fetchLocationId, fetchWeather are the methods for interacting with the
weather API

• StatusBar is a built-in component that allows us to modify the app status bar
at the top of the device

Now let’s make some changes to our component. We need to apply our network
request logic and store that information so that it can be easily displayed. We also
need to make sure that a loading indicator is shown while the request is firing. Let’s
begin with updating our state:

Getting Started with React Native 73

weather/6/App.js

constructor(props) {

super(props);

this.state = {

loading: false,

error: false,

location: '',

temperature: 0,

weather: '',

};

}

We just expanded our state object to include loading, error, temperature, and
weather in addition to location. The three latter properties are data we’ll retreive
from the API. The loading property represents when a call is still being made (in
order to show a loading icon) and error is used to store the error message if our call
fails or returns unusable information.

With setState, updates to our state can happen asynchronously. For this reason, the
method accepts a callback as an optional second parameter that allows us to define
an action to fire after the state is updated. Consider the following as an example:

export default class Example extends React.Component {

state = {

weather: '',

};

componentDidMount() {

this.setState({ weather: 'Clear' }, () =>

console.log(this.state),

);

}

}

// { weather: 'Clear' } is logged right after component mounts

Getting Started with React Native 74

We can apply this logic to the method responsible for interfacing with our external
API: handleUpdateLocation:

weather/6/App.js

handleUpdateLocation = async city => {

if (!city) return;

this.setState({ loading: true }, async () => {

try {

const locationId = await fetchLocationId(city);

const { location, weather, temperature } = await fetchWeather(

locationId,

);

this.setState({

loading: false,

error: false,

location,

weather,

temperature,

});

} catch (e) {

this.setState({

loading: false,

error: true,

});

}

});

};

We’ve updated it to be an asynchronous function that uses setState to change our
loading attribute to true. We also pass in an asynchronous function as its second
argument. In here, we first call fetchLocationId with the user queried city (if
present) and pass the location ID to fetchWeather to return an object that contains
the required information (location, weather, and temperature). Once complete, our

Getting Started with React Native 75

state is updated with the correct parameters. Moreover, if any of the calls happen to
error, the catch statement will update the error property in our state to true.

Now that we have our API logic in place, we’ll need to do a few things in the UI of
our component:

• We need to display a loading spinner only when our API calls have fired but
not completed

• We should show an error message if the user types in an incorrect address or
our API call fails

• We need to render the correct weather information for a certain location

Let’s take a look at how we can update our render() method to do this:

weather/6/App.js

render() {

const {

loading,

error,

location,

weather,

temperature,

} = this.state;

return (

<KeyboardAvoidingView

style={styles.container}

behavior="height"

>

<StatusBar barStyle="light-content" />

<ImageBackground

source={getImageForWeather(weather)}

style={styles.imageContainer}

imageStyle={styles.image}

>

<View style={styles.detailsContainer}>

Getting Started with React Native 76

<ActivityIndicator

animating={loading}

color="white"

size="large"

/>

{!loading && (

<View>

{error && (

<Text style={[styles.smallText, styles.textStyle]}>

Could not load weather, please try a different

city.

</Text>

)}

{!error && (

<View>

<Text

style={[styles.largeText, styles.textStyle]}

>

{location}

</Text>

<Text

style={[styles.smallText, styles.textStyle]}

>

{weather}

</Text>

<Text

style={[styles.largeText, styles.textStyle]}

>

{`${Math.round(temperature)}°`}

</Text>

</View>

)}

<SearchInput

Getting Started with React Native 77

placeholder="Search any city"

onSubmit={this.handleUpdateLocation}

/>

</View>

)}

</View>

</ImageBackground>

</KeyboardAvoidingView>

);

}

It might look like a lot is going on in the file, but let’s break it down piece by piece.
We first included our StatusBar component:

weather/6/App.js

<StatusBar barStyle="light-content" />

The StatusBar component allows us to customize the status bar of our application
using a barStyle prop that lets us change the color of the text within the bar. A value
of light-content renders a lighter color (white) and dark-content will change it to
a darker color (dark-grey).

With Expo, we can also configure the status bar for Android by modifying
app.json.

Expo defaults barStyle for Android to light-content and makes the back-
ground translucent. Although this looks fine for our current application,
you can remove the translucency by providing a background color. Take a
look at the documentation⁴¹ for more details.

We then added ActivityIndicator along with assigning its color and size prop:

⁴¹https://docs.expo.io/versions/latest/guides/configuring-statusbar.html

https://docs.expo.io/versions/latest/guides/configuring-statusbar.html
https://docs.expo.io/versions/latest/guides/configuring-statusbar.html

Getting Started with React Native 78

weather/6/App.js

<ActivityIndicator

animating={loading}

color="white"

size="large"

/>

Notice how we’ve also included an animating prop which we’ve set to be our
state.loading attribute. This prop is responsible for showing or hiding the com-
ponent entirely.

After that, we’ve included a curly brace container in our JSX:

weather/6/App.js

{!loading && (

<View>

{error && (

<Text style={[styles.smallText, styles.textStyle]}>

Could not load weather, please try a different

city.

</Text>

)}

{!error && (

<View>

<Text

style={[styles.largeText, styles.textStyle]}

>

{location}

</Text>

<Text

style={[styles.smallText, styles.textStyle]}

>

{weather}

</Text>

<Text

Getting Started with React Native 79

style={[styles.largeText, styles.textStyle]}

>

{`${Math.round(temperature)}°`}

</Text>

</View>

)}

<SearchInput

placeholder="Search any city"

onSubmit={this.handleUpdateLocation}

/>

</View>

)}

</View>

We’ve previously seen how JSX allows us to embed JavaScript expressions within
curly braces. Fortunately, this lets us include operators as well, allowing us to
conditionally render certain parts of our UI. In here, !loading && <...> means
that this statement will evaluate and display the element if and only if loading is
false. We can see we’ve pretty much wrapped most of the elements that make up our
component within here, and this makes sense since we don’t want to show any text
fields or the search input while the API call is being fetched.

Getting Started with React Native 80

Conditional Rendering
Using logical && operators within the render method is not the only way to
conditionally render parts of the component. At times, this approach can
make it harder to read a component file if a significant number of lines are
being conditionally rendered.

If this happens, it might be a good idea to use helper methods. For example,
our render method can be rewritten following this pattern:

renderContent() {

const { error } = this.state;

return (

<View>

{error && <Text>Error</Text>}

{!error && this.renderInfo()}

</View>

);

}

renderInfo() {

const { info } = this.state;

return <Text>{info}</Text>;

}

render() {

const { loading } = this.state;

return (

<View>

<ActivityIndicator

animating={loading} color="white" size="large"

/>

{!loading && this.renderContent()}

</View>

);

}

The React documentation⁴² goes intomore detail as well as explainingmore
ways to conditionally render parts of components.

⁴²https://reactjs.org/docs/conditional-rendering.html

https://reactjs.org/docs/conditional-rendering.html
https://reactjs.org/docs/conditional-rendering.html

Getting Started with React Native 81

Now within the content that shows when the API call isn’t being fired, we still need
to be able to display an appropriate error message if there’s an issue. We can use the
state.error attribute to conditionally display text in this scenario:

weather/6/App.js

{error && (

<Text style={[styles.smallText, styles.textStyle]}>

Could not load weather, please try a different

city.

</Text>

)}

{!error && (

<View>

<Text

style={[styles.largeText, styles.textStyle]}

>

{location}

</Text>

<Text

style={[styles.smallText, styles.textStyle]}

>

{weather}

</Text>

<Text

style={[styles.largeText, styles.textStyle]}

>

{`${Math.round(temperature)}°`}

</Text>

</View>

)}

<SearchInput

placeholder="Search any city"

onSubmit={this.handleUpdateLocation}

/>

Getting Started with React Native 82

Notice howwe nowdisplay our state information (location, weather, and temperature)
in our Text elements instead of hard-coded values. For temperature, we’re making
use of the JavaScript Math object and its round() method to round the temperature
to the nearest integer.

The last thing we also do is pass the dynamic weather attribute to ImageBackground

instead of a hardcoded Clear string:

weather/6/App.js

<ImageBackground

source={getImageForWeather(weather)}

style={styles.imageContainer}

imageStyle={styles.image}

>

Now if we run our application, typing a city into the input field will return its actual
weather data!

Getting Started with React Native 83

We’ve pretty much finished connecting all the major points of our application by
wiring in network requests to retreive actual data. After slowly beginning with
hardcoded data and building our components that make up the building blocks of
our UI, our application now works just as we intended from the beginning of this
chapter. The next few sections will explore some additional enhancements to our
code but won’t add any new functionality to our app.

PropTypes

With React Native, we can include validation functions using the prop-types library.
This allows us to specify and enforce the type of our component props and ensure that
they match what we expect them to be. This can not only help us catch development
errors sooner but also provide a layer of documentation to the consumer of our
components

We can add prop-types as a dependency:

expo install prop-types

Aside from the “Native Modules” chapter, every application in this book
uses Expo’s managed workflow, and installing packages with the CLI can
be done using expo install.

Although it is still possible to use yarn add to install any dependencies,
using the expo install CLI command ensures that a compatible version
of the package is installed. It will also automatically use yarn if a yarn.lock
file exists in the project.

Now let’s take a look at how we can use PropTypes in SearchInput:

Getting Started with React Native 84

weather/6/components/SearchInput.js

SearchInput.propTypes = {

onSubmit: PropTypes.func.isRequired,

placeholder: PropTypes.string,

};

SearchInput.defaultProps = {

placeholder: '',

};

We’ve defined a propTypes object which instructs React to validate the props given to
our component. We’re specifying that onSubmitmust be a function and placeholder

must be a string. We’ve also specified onSubmit to be required which means it has
to be provided to our component and is not optional.

We’ve left placeholder to be optional. For this, we’remaking use of the defaultProps
object. This allows us to create our component and not specify placeholder if we
don’t need to, defaultProps will take care of providing it’s value in that case. It’s
important to note that the value passed into defaultProps also undergoes type-
checking as well by the library.

Now what exactly happens when a prop’s type is not validated successfully?
When a prop is passed in with an invalid type or fails the propType validation, a
warning is passed into the JavaScript console. These warnings will only be shown
in development mode, so if we accidentally deploy our app into production with an
improper use of a component, our users won’t see the warning.

Class properties

React Native includes class properties transformation⁴³ from Babel that allows us to
simplify how we define our component state, props, and propTypes. For example,
we can update the constructor in App.js to:

⁴³https://babeljs.io/docs/plugins/transform-class-properties/

https://babeljs.io/docs/plugins/transform-class-properties/
https://babeljs.io/docs/plugins/transform-class-properties/

Getting Started with React Native 85

weather/App.js

state = {

loading: false,

error: false,

location: '',

temperature: 0,

weather: '',

};

This gets transpiled into the exact same result as using a constructor. Similarly, we
can simplify how we define our state in SearchInput:

weather/components/SearchInput.js

state = {

text: '',

};

Moreover, we can also set propTypes and defaultProps using static properties in our
class. In other words, we can remove the object references in SearchInput and define
a static method within the class:

weather/components/SearchInput.js

static propTypes = {

onSubmit: PropTypes.func.isRequired,

placeholder: PropTypes.string,

};

static defaultProps = {

placeholder: '',

};

Using this pattern and leveraging class properties transform is purely syntactical
sugar over defining methods and objects separately and allows us to write in a
cleaner, simpler syntax.

Getting Started with React Native 86

Summary

Congratulations, we’ve just built our very first React Native application and covered
almost all of the essentials needed to build a complete and fully functional mobile
app. We began by exploring each of the files generated as a result of starting a new
project and how the Expo CLI allows us to run our application smoothly on our
device without worrying about Xcode and Android Studio set up. We then built out
each of the components that make up our application using the built-in components
provided by React Native. While doing so, we dove into the fundamentals of React
Native understanding JSX, how to apply custom styling as well as understanding
how to use props and state to manage and control data. We moved on to more
complex topics including lifecycle methods and how to use external network calls to
provide real content to our application. Finally, we finished off with a brief look into
how propTypes can add an additional layer of safety by adding type validation to our
application. The rest of this book will dive deeper into core concepts of React Native
and the concepts learned in this chapter will serve as the foundation for everything
else in the text.

So far, we’ve only scratched the surface of what React Native allows us to do. By
knowing the setup/development details like Expo and the core concepts of props,
state, and components, you already have the essentials of React Native development
under your belt. As of now, you can already build a wide variety of applications
using the framework – so go forth and build something amazing!

React Fundamentals
In the last chapter, we built our first React Native application.We explored how React
applications are organized by components. Using the key React concepts of state and
props, we saw how data is managed and how it flows between components. We also
discussed other useful concepts, like handling user input and fetching data from a
remote API.

In this section, we’ll build another application step-by-step. We’ll dive even deeper
into React’s fundamentals. We’ll investigate a pattern that you can use to build React
Native apps from scratch and then put those steps to work to build a time-tracking
application.

In this app, a user can add, delete, and modify various timers. Each timer corresponds
to a different task that the user would like to keep time for:

Time Tracking App

This app will have significantly more interactive capabilities than the one built in
the last chapter. As we’ll see, this will present us with some interesting challenges.

React Fundamentals 88

Getting started

This chapter assumes you’ve setup your system by following the steps at the
beginning of the first chapter.

As with all the chapters in this book, make sure you have the book’s sample code at
the ready.

Previewing the app

Let’s begin by viewing the completed app. To try the completed app on your device:

• On Android, you can scan this QR code using the Expo app:

QR Code

• On iOS, you can navigate to the time-tracking/ directory within the sample
code folder and either preview it on the iOS simulator or send the link of the
project URL to your device as we explained in the previous chapter.

Play around with it to get a feel for all the functionality.

Breaking the app into components

Let’s start by breaking our app down into its components. As we noticed in our
last project, visual components usually map tightly to their respective React Native
components. For example, we can imagine that we’d want a Timer component for
each timer:

React Fundamentals 89

Our application displays a list of timers and has a “+” icon at the top. We’re able to
add new timers to the list using this button. This “+” component is interesting because
it has two distinct representations. When the “+” button is pressed, the component
changes into a form:

React Fundamentals 90

When the form is closed, the component changes back into a “+” button.

There are two approaches we could take. The first one is to have the parent
component decide whether or not to render a “+” component or a form component
based on some piece of stateful data. It could swap between the two children.
However, this adds more responsibility to the parent component. Since no other
child components need this piece of information, it might make more sense to have
a new child component own the single responsibility of determining whether or not
to display a “+” button or a create timer form. We’ll call it ToggleableTimerForm. As
a child, it can either render the component TimerForm or the “+” button.

So, we’ve identified two components in addition to our root application component:

React Fundamentals 91

But the Timer component has a fair bit of functionality. As we saw in the completed
version of the app, each timer turns into a form when the user clicks “Edit”:

A single timer: Displaying time (left) vs. edit form (right)

In addition, timers delete themselves when “Remove” is pressed and have buttons for
starting and stopping. Do we need to break this up? And if so, how?

Displaying a timer and editing a timer are indeed two distinct UI components. They

React Fundamentals 92

should be two distinct React components. Like ToggleableTimerForm, we need some
container component that renders either the timer’s face or its edit form depending
on if the timer is being edited.

We’ll call this EditableTimer. The child of EditableTimerwill then be either a Timer
component or the edit form component. The form for creating and editing timers
is very similar, so let’s assume that we can use the component TimerForm in both
contexts:

As for the other functionality of the timer, like the start and stop buttons, it’s a bit
tough to determine at this point whether or not they should be their own components.
We can trust that the answers will be more apparent after we’ve started writing
some code and have a better idea of the general structure of the components in our
application.

So, we have our final component hierarchy, with some ambiguity around the final
state of the timer component:

React Fundamentals 93

• App: Root container
– EditableTimer: Displays either a timer or a timer’s edit form

* Timer: Displays a given timer
* TimerForm: Displays a given timer’s edit form

– ToggleableTimerForm: Displays a form to create a new timer
* TimerForm: Displays a new timer’s create form

For all the buttons in the app, we’ll create and use a component called TimerButton.

7 step process

Now that we have a good understanding of the composition of our components,
we’re ready to build a static version of our app that only contains hardcoded data.
As we noticed in the previous chapter, many applications we build will require our

React Fundamentals 94

top-level component to communicate with a server. In these scenarios, the server
will be the initial source of state, and React Native will render itself according to
the data the server provides. If our current app followed this pattern it would also
send updates to the server, like when a timer is started. However, for simplicity, in
this chapter we’ll render local state rather than communicating with a server.

It always simplifies things to start off with static components, as we did in the last
chapter. The static version of the app will not be interactive. Pressing buttons, for
example, won’t do anything. But this will enable us to lay the framework for the
app, getting a clear idea of how the component tree is organized.

Next, we can determinewhat the state should be for the app and inwhich component
it should live. At that point, we’ll have the data flow from parent to child in place.
Then we can add inverse data flow, propagating events from child to parent.

In fact, this follows from a handy process for developing a React Native app from
scratch:

1. Break the app into components
2. Build a static version of the app
3. Determine what should be stateful
4. Determine in which component each piece of state should live
5. Hardcode initial states
6. Add inverse data flow
7. Add server communication (if present)

We followed this pattern in the last project:

1. Break the app into components

We looked at the desired UI and determined we wanted a custom SearchInput

component.

2. Build a static version of the app

Our components started off without using state. Instead, we had our root App

component pass down location as a static prop to SearchInput.

3. Determine what should be stateful

React Fundamentals 95

In order for our application to become interactive, we had to be able to modify the
search value of the search input. The value submitted was our stateful location
property.

4. Determine in which component each piece of state should live

Our root App component was responsible for managing the location, temperature,
and weather state parameters using React component class methods.

5. Hardcode initial state

We defined a hardcoded location value and passed it down to SearchInput as a
custom prop.

6. Add inverse data flow

We defined the handleUpdateLocation function in our App container and passed it
down in props so that SearchInput could inform the parent of when our search
input’s submit button is pressed.

7. Add server communication

Weadded server communication between our parent component and the MetaWeather
API to retrieve actual weather data.

These steps only serve as a guideline. You don’t necessarily have to follow it
every time you build an application, but you’ll likely internalize and become more
accustomed to following this structure as you build more applications. If steps in this
process aren’t completely clear right now, don’t worry. The purpose of this chapter
is to familiarize yourself with this procedure.

We’ve already covered step (1) and have a good understanding of all of our
components, except for some uncertainty down at the Timer component. Step (2)
is to build a static version of the app. As in the last project, this amounts to defining
React components, their hierarchy, and their HTML representation. We avoid state
for now.

React Fundamentals 96

Step 2: Build a static version of the app

Prepare the app

Before beginning, run the following commands in your terminal to create a new
React Native app:

expo init time-tracking --template blank@sdk-36 --yarn

cd time-tracking

yarn start

App

Let’s start off by writing our App component in the file App.js. We’ll begin with our
imports:

time-tracking/1/App.js

import React from 'react';

import { StyleSheet, View, ScrollView, Text } from 'react-native';

import EditableTimer from './components/EditableTimer';

import ToggleableTimerForm from './components/ToggleableTimerForm';

After importing the core React Native components we’ll be using in App, we import
EditableTimer and ToggleableTimerForm. We’ll be implementing those shortly.

We’ll have our App component render both ToggleableTimerForm and a couple of
EditableTimer components. Because we’re building the static version of our app,
we’ll manually set all the props:

React Fundamentals 97

time-tracking/1/App.js

export default class App extends React.Component {

render() {

return (

<View style={styles.appContainer}>

<View style={styles.titleContainer}>

<Text style={styles.title}>Timers</Text>

</View>

<ScrollView style={styles.timerList}>

<ToggleableTimerForm isOpen={false} />

<EditableTimer

id="1"

title="Mow the lawn"

project="House Chores"

elapsed="8986300"

isRunning

/>

<EditableTimer

id="2"

title="Bake squash"

project="Kitchen Chores"

elapsed="3890985"

editFormOpen

/>

</ScrollView>

</View>

);

}

}

At the top, we display a title (“Timers”) inside of a Text component. We’ll look at the
styles object in a moment.

After our title, we render the rest of the components in a ScrollView component.
The built-in ScrollView component in React Native is responsible for wrapping
components within a scrolling container.

React Fundamentals 98

We’re passing down one prop to ToggleableTimerForm: isOpen. This is used by
the child component to determine whether to render a “+” or TimerForm. When
ToggleableTimerForm is “open” the form is being displayed.

We also include two separate EditableTimer components within App. We’ll dig into
each of these props when we build the component. Notably, isRunning specifies
whether the timer is running and editFormOpen specifies whether EditableTimer

should display the timer’s face or its edit form.

Note that we don’t explicitly set any values for the props isRunning on the first
EditableTimer or editFormOpen on the second:

time-tracking/1/App.js

<EditableTimer

id="1"

title="Mow the lawn"

project="House Chores"

elapsed="8986300"

isRunning

/>

<EditableTimer

id="2"

title="Bake squash"

project="Kitchen Chores"

elapsed="3890985"

editFormOpen

/>

This is a style for boolean props you’ll often encounter in React Native apps. When
no explicit value is passed, the prop defaults to true. So <ToggleableTimerForm

isOpen /> will give the same result as <ToggleableTimerForm isOpen={true}/>.
Conversely, when a prop is absent it is undefined. This means that for the first timer
editFormOpen is “falsy.”

ScrollView renders all of its components at once, even those not currently
shown in the screen.

React Fundamentals 99

Last, here are the styles we’re using:

time-tracking/1/App.js

const styles = StyleSheet.create({

appContainer: {

flex: 1,

},

titleContainer: {

paddingTop: 35,

paddingBottom: 15,

borderBottomWidth: 1,

borderBottomColor: '#D6D7DA',

},

title: {

fontSize: 18,

fontWeight: 'bold',

textAlign: 'center',

},

timerList: {

paddingBottom: 15,

},

});

We’re not going to focus on styles in this chapter so feel free to just copy over the
styles object for each component.

EditableTimer

With all of our child components, we’ll save their respective files within a components
subdirectory. Let’s create components/EditableTimer.js.

First, we’ll begin by implementing TimerForm and Timer. We’ll be creating those
shortly:

React Fundamentals 100

time-tracking/1/components/EditableTimer.js

import React from 'react';

import TimerForm from './TimerForm';

import Timer from './Timer';

EditableTimer will either return a timer’s face (Timer) or a timer’s edit form
(TimerForm) based on the prop editFormOpen. We don’t anticipate this component
will ever manage state.

So far, we’ve written React components as ES6 classes that extend React.Component.
However, there’s another way to declare React components: as functions.

Let’s see what that looks like:

time-tracking/1/components/EditableTimer.js

export default function EditableTimer({

id,

title,

project,

elapsed,

isRunning,

editFormOpen,

}) {

if (editFormOpen) {

return <TimerForm id={id} title={title} project={project} />;

}

return (

<Timer

id={id}

title={title}

project={project}

elapsed={elapsed}

isRunning={isRunning}

/>

);

}

React Fundamentals 101

EditableTimer is a regular JavaScript function. In React, we call components written
this way stateless functional components or functional components for short. While
we can write EditableTimer using either component style, it’s a perfect candidate to
be written as a function.

Think of functional components as components that only need to implement the
render() method. They don’t manage state and don’t need any of React’s special
lifecycle hooks.

Throughout this book, we’ll refer to the two different types as class
components and functional components.

Note that the props are passed in as the first argument to the function. We don’t
use this when working with functional components. Here, we use destructuring to
extract all the props from the props object.

The component’s render method switches on the prop editFormOpen. If true, we
render a TimerForm. Otherwise, we render Timer.

As we saw in App, this component receives six props. This component passes down
the props id, title and project to TimerForm. For Timer, we pass down all the timer
attributes.

Benefits of functional components

Why would we want to use functional components? There are two main reasons:

First, using functional components where possible encourages developers to manage
state in fewer locations. This makes our programs easier to reason about.

Second, using functional components are a great way to create reusable components.
Because functional components need to have all their configuration passed from the
outside, they are easy to reuse across apps or projects.

A good rule of thumb is to use functional components as much as possible. If we
don’t need any lifecycle methods and can get away with only a render() function,
using a functional component is a great choice.

React Fundamentals 102

Note that React still allows us to set propTypes and defaultProps on
functional components.

TimerForm

TimerFormwill contain two TextInput fields for editing a timer’s title and project.
We’ll also add a pair of buttons at the bottom.

Like EditableTimer, we can write this component as a functional component:

time-tracking/1/components/TimerForm.js

import React from 'react';

import { StyleSheet, View, Text, TextInput } from 'react-native';

import TimerButton from './TimerButton';

export default function TimerForm({ id, title, project }) {

const submitText = id ? 'Update' : 'Create';

return (

<View style={styles.formContainer}>

<View style={styles.attributeContainer}>

<Text style={styles.textInputTitle}>Title</Text>

<View style={styles.textInputContainer}>

<TextInput

style={styles.textInput}

underlineColorAndroid="transparent"

defaultValue={title}

/>

</View>

</View>

<View style={styles.attributeContainer}>

<Text style={styles.textInputTitle}>Project</Text>

<View style={styles.textInputContainer}>

<TextInput

React Fundamentals 103

style={styles.textInput}

underlineColorAndroid="transparent"

defaultValue={project}

/>

</View>

</View>

<View style={styles.buttonGroup}>

<TimerButton small color="#21BA45" title={submitText} />

<TimerButton small color="#DB2828" title="Cancel" />

</View>

</View>

);

}

const styles = StyleSheet.create({

formContainer: {

backgroundColor: 'white',

borderColor: '#D6D7DA',

borderWidth: 2,

borderRadius: 10,

padding: 15,

margin: 15,

marginBottom: 0,

},

attributeContainer: {

marginVertical: 8,

},

textInputContainer: {

borderColor: '#D6D7DA',

borderRadius: 2,

borderWidth: 1,

marginBottom: 5,

},

textInput: {

height: 30,

padding: 5,

React Fundamentals 104

fontSize: 12,

},

textInputTitle: {

fontSize: 14,

fontWeight: 'bold',

marginBottom: 5,

},

buttonGroup: {

flexDirection: 'row',

justifyContent: 'space-between',

},

});

We wrap each of our form elements in a View container. Each input field has a label
(“Title” and “Project”) above a TextInput.

At the end of the component, we have a button group with two TimerButton

instances. We’ll create this component in a bit.

Let’s take a closer look at how we’ve set up TextInput for the timer’s title:

time-tracking/1/components/TimerForm.js

<TextInput

style={styles.textInput}

underlineColorAndroid="transparent"

defaultValue={title}

/>

And for the timer’s project:

React Fundamentals 105

time-tracking/1/components/TimerForm.js

<TextInput

style={styles.textInput}

underlineColorAndroid="transparent"

defaultValue={project}

/>

Aside from adding styles using the style prop, we’re also using the TextInput

component’s defaultValue property. When the form is used for editing as it is here,
we want the fields to be populated with the current title and project values for this
timer. Using defaultValue initializes these fields with the current values, as desired.

Later, we’ll use TimerForm again within ToggleableTimerForm for creating
timers. ToggleableTimerFormwill not pass TimerForm the title or project
props. We’ll use defaultProps to default these values to empty strings.

At the beginning of the component function, before the return statement, we define
the variable submitText. This variable uses the presence of props.id to determine
what text the submit button at the bottom of the form should display. If id is
present, we know we’re editing an existing timer, so it displays “Update.” Otherwise,
it displays “Create.”

With all of this logic in place, TimerForm is prepared to render a form for creating a
new timer or editing an existing one.

We used an expression with the ternary operator to set the value of
submitText. The syntax is:

condition ? expression1 : expression2

If the condition is true, the ternary expression evaluates to expression1.
Otherwise, it evaluates to expression2. In our example, the variable
submitText is set to the result of the ternary expression.

React Fundamentals 106

TimerButton

Now let’s set up a component that we can use for all the buttons in our application,
TimerButton. Again, we can write this as a functional component:

time-tracking/1/components/TimerButton.js

1 import { StyleSheet, Text, TouchableOpacity } from 'react-native';

2 import React from 'react';

3

4 export default function TimerButton({

5 color,

6 title,

7 small,

8 onPress,

9 }) {

10 return (

11 <TouchableOpacity

12 style={[styles.button, { borderColor: color }]}

13 onPress={onPress}

14 >

15 <Text

16 style={[

17 styles.buttonText,

18 small ? styles.small : styles.large,

19 { color },

20]}

21 >

22 {title}

23 </Text>

24 </TouchableOpacity>

25);

26 }

27

28 const styles = StyleSheet.create({

29 button: {

30 marginTop: 10,

React Fundamentals 107

31 minWidth: 100,

32 borderWidth: 2,

33 borderRadius: 3,

34 },

35 small: {

36 fontSize: 14,

37 padding: 5,

38 },

39 large: {

40 fontSize: 16,

41 padding: 10,

42 },

43 buttonText: {

44 textAlign: 'center',

45 fontWeight: 'bold',

46 },

47 title: {

48 fontSize: 14,

49 fontWeight: 'bold',

50 },

51 elapsedTime: {

52 fontSize: 18,

53 fontWeight: 'bold',

54 textAlign: 'center',

55 paddingVertical: 10,

56 },

57 });

React Native provides a built-in Button component, but it only allows for limited
customization. For this reason, we’re leveraging TouchableOpacity, which renders a
wrapper to allow for components to respond with opacity changes when pressed.

For easier customization, we’ve included color, title, and small as props that will
allow us to change how our button looks. The title prop is responsible for the button
text while the color prop changes the text and border colors. The small prop is a
boolean prop passed in to render a smaller button with slightly different styling.

React Fundamentals 108

Since we plan on using this component in multiple places in our app, we’ve defined
an onPress prop in order to fire a specific function that’s passed into our component
when the button is pressed. We’re not using it currently in TimerForm but we will as
soon as we add actual data in our application.

TouchableOpacity accepts an activeOpacity prop that allows us to deter-
mine what the opacity of the view should be when pressed. This defaults
to a value of 0.2.

ToggleableTimerForm

Let’s turn our attention next to ToggleableTimerForm. Recall that this is a wrapper
component around TimerForm. It will display either a “+” or a TimerForm. Right now,
it accepts a single prop, isOpen, from its parent that instructs its behavior:

time-tracking/1/components/ToggleableTimerForm.js

import React from 'react';

import { StyleSheet, View } from 'react-native';

import TimerButton from './TimerButton';

import TimerForm from './TimerForm';

export default function ToggleableTimerForm({ isOpen }) {

return (

<View style={[styles.container, !isOpen && styles.buttonPadding]}>

{isOpen ? (

<TimerForm />

) : (

<TimerButton title="+" color="black" />

)}

</View>

);

}

const styles = StyleSheet.create({

React Fundamentals 109

container: {

paddingVertical: 10,

},

buttonPadding: {

paddingHorizontal: 15,

},

});

As noted earlier, TimerForm does not receive any props from ToggleableTimerForm.
As such, its title and project fields will be rendered empty.

We’re using a ternary operator again here to either return TimerForm or render a
“+” button. You could make a case that this should be its own component (say
PlusButton) but at present we’ll keep the code inside ToggleableTimerForm.

Timer

Time for the Timer component.

As with all projects in this book, the sample code for this project comes with a utils/
directory that contains various functions that will aid in the construction of this app.
We’ll be using one of those functions now. If you haven’t already, go ahead and copy
over time-tracking/utils/ from the sample code to your project directory now.

With utils/ in place, let’s take a look at our first version of Timer:

time-tracking/1/components/Timer.js

import React from 'react';

import { StyleSheet, View, Text } from 'react-native';

import { millisecondsToHuman } from '../utils/TimerUtils';

import TimerButton from './TimerButton';

export default function Timer({ title, project, elapsed }) {

const elapsedString = millisecondsToHuman(elapsed);

return (

React Fundamentals 110

<View style={styles.timerContainer}>

<Text style={styles.title}>{title}</Text>

<Text>{project}</Text>

<Text style={styles.elapsedTime}>{elapsedString}</Text>

<View style={styles.buttonGroup}>

<TimerButton color="blue" small title="Edit" />

<TimerButton color="blue" small title="Remove" />

</View>

<TimerButton color="#21BA45" title="Start" />

</View>

);

}

const styles = StyleSheet.create({

timerContainer: {

backgroundColor: 'white',

borderColor: '#d6d7da',

borderWidth: 2,

borderRadius: 10,

padding: 15,

margin: 15,

marginBottom: 0,

},

title: {

fontSize: 14,

fontWeight: 'bold',

},

elapsedTime: {

fontSize: 26,

fontWeight: 'bold',

textAlign: 'center',

paddingVertical: 15,

},

buttonGroup: {

flexDirection: 'row',

justifyContent: 'space-between',

React Fundamentals 111

},

});

The elapsed prop in this app is in milliseconds. This is the representation of the data
that React will keep. This is a good representation for machines, but we want to show
our users a more human-readable format.

We use a function defined in ./utils/TimerUtils, millisecondsToHuman(). You can
pop open that file if you’re curious about how it’s implemented. The string it renders
is in the format ‘HH:MM:SS’.

Note that we could store elapsed in seconds as opposed to milliseconds,
but JavaScript’s time functionality is all in milliseconds. We keep elapsed

consistent with this for simplicity.

Try it out

With all of our components laid out, let’s boot up the React Native packager to see
our app so far:

React Fundamentals 112

Tweak some of the props and refresh to see the results. For example:

• Flip the prop passed down to ToggleableTimerForm from false to true and see
the timer form render in the place of the “+” button:

React Fundamentals 113

• Remove the editFormOpen prop in the second EditableTimer component within
App and witness the component flip the child it renders accordingly:

React Fundamentals 114

To review, our App component currently renders a ToggleableTimerForm component
and two EditableTimer components.

ToggleableTimerForm renders either a “+” or a TimerForm based on the prop isOpen.

EditableTimer renders either Timer or TimerForm based on the prop editFormOpen.
Timer and TimerForm are our app’s bottom-level components. They hold the majority
of the screen’s UI. The components above them are primarily concerned with
orchestration.

So far, we’ve used hardcoded props to pass data around our app. But in order to
enhance our app with interactivity, we must evolve it from its static existence to a
mutable one. As we saw in the last chapter, in React we use state to accomplish this.

Step 3: Determine what should be stateful

Before introducing state, we need to determinewhat, exactly, should be stateful. Let’s
start by collecting all of the data that’s consumed by each component in our static

React Fundamentals 115

app. In our static app, data will be wherever we are defining or using props. We will
then determine which of that data should be stateful.

App

This declares two child components. It sets one prop, which is the isOpen boolean
that is passed down to ToggleableTimerForm.

EditableTimer

This uses the prop editFormOpen and also accepts all the attributes of a timer.

Timer

This uses all the attributes for a timer.

TimerForm

This has two interactive input fields, one for title and one for project. When editing
an existing timer, these fields are initialized with the timer’s current values.

State criteria

We can apply criteria to determine if data should be stateful:

These questions are from the excellent article by Facebook called “Thinking
In React.” You can read the original article here⁴⁴.

1. Is it passed in from a parent via props? If so, it probably isn’t state.

A lot of the data used in our child components are already listed in their parents.
This criterion helps us de-duplicate.

For example, “timer properties” is listed multiple times. When we see the properties
declared in EditableTimer, we can consider it state. But when we see it elsewhere,
it’s not.

2. Does it change over time? If not, it probably isn’t state.

This is a key criterion of stateful data: it changes.

⁴⁴https://facebook.github.io/react/docs/thinking-in-react.html

https://facebook.github.io/react/docs/thinking-in-react.html
https://facebook.github.io/react/docs/thinking-in-react.html

React Fundamentals 116

3. Can you compute it based on any other state or props in your component? If
so, it’s not state.

For simplicity, we want to strive to represent state with as few data points as possible.

Applying the criteria

App

• isOpen boolean for ToggleableTimerForm and timer properties for EditableTimer

Stateful. The data is defined here. It changes over time. And it cannot be computed
from other state or props.

• timer attributes

Stateful. We define the data on each EditableTimer here. This data is mutable. And
it cannot be computed from other state or props.

EditableTimer

• editFormOpen for a given timer

Stateful. The data is defined here. It changes over time. And it cannot be computed
from other state or props.

Timer

• Timer properties

In this context, not stateful. Properties are passed down from the parent.

TimerForm

We might be tempted to conclude that TimerForm doesn’t manage any stateful data,
as title and project are props passed down from the parent. However, as saw with
our SearchInput component in the previous chapter, components that use TextInput
can be special state managers in their own right – these components often maintain
the value of the input field as state.

So, outside of TimerForm, we’ve identified our stateful data:

React Fundamentals 117

• The list of timers and properties of each timer
• Whether or not the edit form of a timer is open
• Whether or not the create form is open

Step 4: Determine in which component each
piece of state should live

While the data we’ve determined to be stateful might live in certain components in
our static app, this does not indicate the best position for it in our stateful app. Our
next task is to determine the optimal place for each of our three discrete pieces of
state to live.

This can be challenging at times but, again, we can apply the following steps from
Facebook’s guide “Thinking in React⁴⁵” to help us with the process:

For each piece of state:

• Identify every component that renders something based on that state.
• Find a common owner component (a single component above all the
components that need the state in the hierarchy).

• Either the common owner or another component higher up in the
hierarchy should own the state.

• If you can’t find a component where it makes sense to own the state,
create a new component simply for holding the state and add it
somewhere in the hierarchy above the common owner component.

Let’s apply this method to our application:

The list of timers and attributes of each timer

At first glance, we may be tempted to conclude that App does not appear to use this
state. Instead, the first component that uses this state is EditableTimer. We might
think it would be wise to move timer attributes into the EditableTimer component’s
state as opposed to passing them down as props.

⁴⁵https://facebook.github.io/react/docs/thinking-in-react.html

https://facebook.github.io/react/docs/thinking-in-react.html
https://facebook.github.io/react/docs/thinking-in-react.html

React Fundamentals 118

While this may be the case for displaying timers, modifying them, and deleting them,
what about creating them? ToggleableTimerForm does not need the state to render,
but it can affect state. It needs to be able to insert a new timer. It will propagate the
data for the new timer up to the root App.

Therefore, App is truly the common owner. It renders EditableTimer components
by passing down timer state. It can handle modifications from EditableTimer and
creates from ToggleableTimerForm, mutating the state. The new state will then flow
downward through EditableTimer via props.

Whether or not the edit form of a timer is open

In our static app, App specifies whether or not an EditableTimer should be rendered
with its edit form open. Technically, though, this state could just live in each
individual EditableTimer. No parent component in the hierarchy depends on this
data.

Storing the state in EditableTimer will be fine for our current needs. But there
are a few requirements that might require us to “hoist” this state up higher in the
component hierarchy in the future.

For instance, what if we wanted to impose a restriction such that only one form,
including the create form, could be open at a time? Then it would make sense for
App to own the state, as it would need to inspect it to determine whether to allow for
another form to open.

Visibility of the create form

App doesn’t appear to care about whether ToggleableTimerForm is open or closed. It
feels safe to reason that the state can just live inside ToggleableTimerForm itself.

So, in summary, we’ll have three pieces of state each in three different components:

• Timer data will be owned and managed by App.
• Each EditableTimer will manage the state of its timer edit form.
• The ToggleableTimerForm will manage the state of its form visibility.

React Fundamentals 119

Step 5: Hardcode initial states

We’re now well prepared to make our app stateful. We’ll define our initial states
within the components themselves. This means hardcoding a list of timers in the top-
level component, App. For our two other pieces of state, we’ll have the components’
forms closed by default.

After we’ve added initial state to a parent component, we’ll make sure our props are
properly established in its children.

Adding state to App

Let’s start by modifying App to hold the timer data in state.

We’ll be using the npm library uuid⁴⁶ to generate ids for each of our timers. The
library’s function uuidv4()will randomly generate a Universally Unique IDentifier⁴⁷
for each of our timers.

A UUID is a string that looks like this:

2030efbd-a32f-4fcc-8637-7c410896b3e3

First, in your console, install the library:

expo install uuid

Then, at the top of App.js, import the uuidv4() function:

⁴⁶https://www.npmjs.com/package/uuid
⁴⁷https://en.wikipedia.org/wiki/Universally_unique_identifier

https://www.npmjs.com/package/uuid
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://www.npmjs.com/package/uuid
https://en.wikipedia.org/wiki/Universally_unique_identifier

React Fundamentals 120

time-tracking/2/App.js

import uuidv4 from 'uuid/v4';

Next, we’ll initialize the component’s state to an array of two timer objects. This will
give us a list of timers to play with when we open the app:

time-tracking/2/App.js

export default class App extends React.Component {

state = {

timers: [

{

title: 'Mow the lawn',

project: 'House Chores',

id: uuidv4(),

elapsed: 5456099,

isRunning: true,

},

{

title: 'Bake squash',

project: 'Kitchen Chores',

id: uuidv4(),

elapsed: 1273998,

isRunning: false,

},

],

};

We set the initial state to an object with the key timers. timers points to an array
with two hardcoded timer objects.

As in the previous chapter, we’re leaning on the Babel plugin
transform-class-properties to help simplify how we define our initial
state.

React Fundamentals 121

Below, in render, we’ll use state.timers to generate an array of EditableTimer

components. Eachwill be derived from an individual object in the timers array that’s
being passed in as a prop. We’ll use map to do so:

time-tracking/2/App.js

render() {

const { timers } = this.state;

return (

<View style={styles.appContainer}>

<View style={styles.titleContainer}>

<Text style={styles.title}>Timers</Text>

</View>

<ScrollView style={styles.timerList}>

<ToggleableTimerForm />

{timers.map(

({ title, project, id, elapsed, isRunning }) => (

<EditableTimer

key={id}

id={id}

title={title}

project={project}

elapsed={elapsed}

isRunning={isRunning}

/>

),

)}

</ScrollView>

</View>

);

}

The rendered UI of the component ends up being an array of EditableTimer

components:

React Fundamentals 122

[

<EditableTimer

timer={{

title: 'Mow the lawn',

project: 'House Chores',

id: // random UUID,

elapsed: 5456099,

isRunning: true,

}}

/>,

<EditableTimer

timer={{

title: 'Bake squash',

project: 'Kitchen Chores',

id: // random UUID,

elapsed: 1273998,

isRunning: false,

}}

/>

]

Notably, we’re able to represent the EditableTimer component instance in JSX inside
of return. It might seem odd at first that we’re able to have a JavaScript array of
JSX elements, but remember that Babel will transpile the JSX representation of each
EditableTimer (<EditableTimer />) into regular JavaScript.

If you’re interested in how this compiles, please refer to the Appendix.

Note the use of the key={timer.id} prop. The key prop is not used by our
EditableTimer component but by the React Native framework. It’s a special
property that we discuss deeper in the next chapter “Core Components.” For
the time being, it’s enough to note that this property needs to be unique
per React Native component in a list.

React Fundamentals 123

Array’s map()

If you’re unfamiliar with the mapmethod, it takes a function as an argument
and calls it with each item inside of the array and builds a new array by
using the return value from each function call.

Since the timers array has two items, map will call this function twice,
once for each timer. When map calls this function, it passes in as the first
argument an item. The return value from this function call is inserted into
the new array that map is constructing. After handling the last item, map
returns this new array. Here, we’re rendering this new array within our
render() method.

Props vs. state

Let’s take a step back and reflect on the difference between props and state again.
What existed as mutable state in App is passed down as immutable props to
EditableTimer.

We talked at length about what qualifies as state and where state should live.
Mercifully, we do not need to have an equally lengthy discussion about props. Once
you understand state, you can see how props act as its one-way data pipeline. State
is managed in some select parent components and then that data flows down through
children as props.

If state is updated, the componentmanaging that state re-renders by calling render().
This, in turn, causes any of its children to re-render as well. And the children of those
children. And on and on down the chain.

Let’s continue our own march down the chain.

Adding state to EditableTimer

In the static version of our app, EditableTimer relied on editFormOpen as a prop to
be passed down from the parent. We decided that this state could actually live here
in the component itself.

Because this component will actually manage state, we’ll need to change it from a
functional component to a class component.

React Fundamentals 124

We’ll set the initial value of editFormOpen to false, which means that the form starts
off as closed:

time-tracking/2/components/EditableTimer.js

export default class EditableTimer extends React.Component {

state = {

editFormOpen: false,

};

render() {

const { id, title, project, elapsed, isRunning } = this.props;

const { editFormOpen } = this.state;

if (editFormOpen) {

return <TimerForm id={id} title={title} project={project} />;

}

return (

<Timer

id={id}

title={title}

project={project}

elapsed={elapsed}

isRunning={isRunning}

/>

);

}

}

Timer remains stateless

If you look at Timer, you’ll see that it does not need to be modified to include state.
It has been using exclusively props and is so far unaffected by our current refactor.

React Fundamentals 125

Adding state to ToggleableTimerForm

We know that we’ll need to tweak ToggleableTimerForm as we’ve assigned it some
stateful responsibility. We want to have the component manage the state isOpen.

We’ll initialize the state to a “closed” state at the top of the component:

time-tracking/2/components/ToggleableTimerForm.js

export default class ToggleableTimerForm extends React.Component {

state = {

isOpen: false,

};

Next, we’ll define a function that toggles the state of the form to open:

time-tracking/2/components/ToggleableTimerForm.js

handleFormOpen = () => {

this.setState({ isOpen: true });

};

Finally, we’ll modify the component’s render() method to include our app’s first
piece of interactivity. We’ll switch off of isOpen to determine whether we should
render the “+” button or a TimerForm. We’ll set handleFormOpen as the onPress

handler for TimerButton:

time-tracking/2/components/ToggleableTimerForm.js

render() {

const { isOpen } = this.state;

return (

<View

style={[styles.container, !isOpen && styles.buttonPadding]}

>

{isOpen ? (

<TimerForm />

React Fundamentals 126

) : (

<TimerButton

title="+"

color="black"

onPress={this.handleFormOpen}

/>

)}

</View>

);

}

If you remember, we created TimerButton to accept an onPress prop which is passed
down to the onPress action of the TouchableOpacity within. TouchableOpacity is a
built-in React Native component. When it is pressed, it will invoke its onPress han-
dler. TimerButton passes along its own onPress prop directly to TouchableOpacity.

Therefore, when the TimerButton is pressed, the function handleFormOpen() will be
invoked. handleFormOpen() modifies the state, setting isOpen to true. This causes
the ToggleableTimerForm component to re-render. When render() is called this
second time around, this.state.isOpen is true and ToggleableTimerForm renders
TimerForm. Neat.

As we explored in the last chapter, we are writing the handleFormOpen()

function as a property initializer (i.e. using an arrow function) in order
to ensure this inside the function is bound to the component. React will
automatically bind class methods corresponding to the component API
(like render and componentDidMount) to the component for us.

Our updated ToggleableTimerForm, in full:

React Fundamentals 127

time-tracking/2/components/ToggleableTimerForm.js

export default class ToggleableTimerForm extends React.Component {

state = {

isOpen: false,

};

handleFormOpen = () => {

this.setState({ isOpen: true });

};

render() {

const { isOpen } = this.state;

return (

<View

style={[styles.container, !isOpen && styles.buttonPadding]}

>

{isOpen ? (

<TimerForm />

) : (

<TimerButton

title="+"

color="black"

onPress={this.handleFormOpen}

/>

)}

</View>

);

}

}

Adding state to TimerForm

We mentioned earlier that TimerForm would manage state as it includes a form. In
React Native, forms are stateful.

React Fundamentals 128

Recall that TimerForm includes two input fields:

These input fields are modifiable by the user. In React Native, all modifications that
are made to a component should be handled and kept in state. This includes changes
like the modification of an input field. The best way to understand this is to see what
it looks like.

Tomake these input fields stateful, we canmake our component stateful and initialize
state at the top of our component:

time-tracking/2/components/TimerForm.js

export default class TimerForm extends React.Component {

constructor(props) {

super(props);

const { id, title, project } = props;

this.state = {

title: id ? title : '',

project: id ? project : '',

};

}

Our state object has two properties, each corresponding to an input field that
TimerForm manages. If TimerForm is creating a new timer as opposed to editing an
existing one, the id prop will be undefined. In that case, we initialize both properties
to a blank string ('') using ternary operators. Otherwise, when this form is editing
a timer, we’ll want to set both values to their respective prop values.

React Fundamentals 129

Note that because we’re checking and defining our state based on props, we’re using
the constructor() for state initialization instead of defining state as a class property.

We want to avoid initializing title or project to undefined. That’s
because the value of an input field can’t technically ever be undefined.
If it’s empty, its value in JavaScript is a blank string.

In our first pass at building this component, we used defaultValue to set the initial
state of the TextInput fields based on props. But the defaultValue prop only sets the
value of the TextInput for the initial render. Instead of using defaultValue, we can
connect our input fields directly to our component’s state using value. We could do
something like this:

<TextInput value={this.state.title} />

With this, our input fields would be driven by state. Whenever either of our state
properties change, our input fields would be updated to reflect the new value.

However, this misses a key ingredient: We don’t currently have any way for the
user tomodify this state. The input field will start off in-sync with the component’s
state. But the moment the user makes a modification, the input field will become
out-of-sync with the component’s state.

We can fix this by using React Native’s onChangeText prop for TextInput compo-
nents. Like onPress for a button component, we can set onChangeText to a function
like we did in our previous chapter. Whenever the input field is changed, React will
invoke the function specified.

Let’s set the onChangeText attributes on both input fields to functions we’ll define
next. For our title input field:

React Fundamentals 130

time-tracking/2/components/TimerForm.js

<TextInput

style={styles.textInput}

underlineColorAndroid="transparent"

onChangeText={this.handleTitleChange}

value={title}

/>

And similarly for project :

time-tracking/2/components/TimerForm.js

<TextInput

style={styles.textInput}

underlineColorAndroid="transparent"

onChangeText={this.handleProjectChange}

value={project}

/>

The functions handleTitleChange and handleProjectChange will both modify their
respective properties in state. Here’s what they look like:

time-tracking/2/components/TimerForm.js

handleTitleChange = title => {

this.setState({ title });

};

handleProjectChange = project => {

this.setState({ project });

};

When React Native invokes the function passed to onChangeText, it invokes the
function with the changed text passed as the argument. With this, we update the
state to the new value of the input field.

React Fundamentals 131

Using a combination of state, the value attribute, and the onChangeText attribute
is the canonical method we use to write form elements in React Native.

Our updated TimerForm component, in full:

time-tracking/2/components/TimerForm.js

export default class TimerForm extends React.Component {

constructor(props) {

super(props);

const { id, title, project } = props;

this.state = {

title: id ? title : '',

project: id ? project : '',

};

}

handleTitleChange = title => {

this.setState({ title });

};

handleProjectChange = project => {

this.setState({ project });

};

render() {

const { id } = this.props;

const { title, project } = this.state;

const submitText = id ? 'Update' : 'Create';

return (

<View style={styles.formContainer}>

<View style={styles.attributeContainer}>

<Text style={styles.textInputTitle}>Title</Text>

<View style={styles.textInputContainer}>

React Fundamentals 132

<TextInput

style={styles.textInput}

underlineColorAndroid="transparent"

onChangeText={this.handleTitleChange}

value={title}

/>

</View>

</View>

<View style={styles.attributeContainer}>

<Text style={styles.textInputTitle}>Project</Text>

<View style={styles.textInputContainer}>

<TextInput

style={styles.textInput}

underlineColorAndroid="transparent"

onChangeText={this.handleProjectChange}

value={project}

/>

</View>

</View>

<View style={styles.buttonGroup}>

<TimerButton small color="#21BA45" title={submitText} />

<TimerButton small color="#DB2828" title="Cancel" />

</View>

</View>

);

}

}

To recap, here’s an example of the lifecycle of TimerForm:

1. On the page is a timer with the title “Mow the lawn.”
2. The user toggles open the edit form for this timer, mounting TimerForm to the

screen.
3. TimerForm initializes the state property title to the string "Mow the lawn".
4. The user modifies the title input field, changing it to the value "Cut the

grass".

React Fundamentals 133

5. With every keystroke, React invokes handleTitleChange. The internal state of
title is kept in-sync with what the user sees on the page.

With TimerForm refactored, we’ve finished establishing our stateful data inside our
components. And we’ve assembled our downward data pipeline, props.

We’re ready — and perhaps a bit eager — to build out interactivity using inverse data
flow. But before we do, let’s save and reload the app to ensure everything is working.

Try it out

We expect to see new example timers based on the hardcoded data in App. We also
expect pressing the “+” button toggles open a form:

Step 6: Add inverse data flow

As we saw in the last chapter, children communicate with parents by calling
functions that are provided to them via props. In our weather app, when our search
field was submitted with a value, SearchInput didn’t do any data management.

React Fundamentals 134

Instead, it called a function given to it by App, which was then able to manage state
accordingly.

We are going to need inverse data flow in two areas:

• TimerForm needs to propagate create and update events (create while under
ToggleableTimerForm and updatewhile under EditableTimer). Both eventswill
eventually reach our top level App.

• Timer has a fair amount of behavior. It needs to handle delete and edit press,
as well as the start and stop timer logic.

Let’s start with TimerForm.

TimerForm

To get a clear idea of what exactly TimerFormwill require, we’ll start by adding event
handlers to it and then we’ll work our way backwards up the hierarchy.

TimerForm needs two event handlers:

• When the form is submitted (creating or updating a timer)
• When the “Cancel” button is pressed (closing the form)

TimerForm will receive two functions as props to handle each event. The parent
component that uses TimerForm is responsible for providing these functions:

• props.onFormSubmit(): called when the form is submitted
• props.onFormClose(): called when the “Cancel” button is pressed

As we’ll see soon, this enables the parent component to determine what the behavior
should be when these events occur.

Let’s first add onFormClose to the props being destructured in the component’s render
method:

React Fundamentals 135

time-tracking/3/components/TimerForm.js

render() {

const { id, onFormClose } = this.props;

We’ll then modify the buttons on TimerForm by specifying onPress props for each:

time-tracking/3/components/TimerForm.js

<View style={styles.buttonGroup}>

<TimerButton

small

color="#21BA45"

title={submitText}

onPress={this.handleSubmit}

/>

<TimerButton

small

color="#DB2828"

title="Cancel"

onPress={onFormClose}

/>

</View>

The onPress prop for the “Submit” button specifies the function this.handleSubmit,
which we’ll define next. The onPress prop for the “Cancel” button specifies the prop
onFormClose directly.

Now that we’ve seen howwe’ll use handleSubmit, let’s write it. Declare this function
above render():

React Fundamentals 136

time-tracking/3/components/TimerForm.js

handleSubmit = () => {

const { onFormSubmit, id } = this.props;

const { title, project } = this.state;

onFormSubmit({

id,

title,

project,

});

};

Again, we’re working bottom-up right now. So the handleSubmit()method calls the
anticipated function onFormSubmit() which we’ll write in a moment. It passes in a
data object with id, title, and project attributes.

Notice that we’re reading id via props and reading title and project from state.
This is because we want to supply the function with the up-to-date values of title
and project (in state) as opposed to the initial values (supplied as props).

ToggleableTimerForm

Let’s follow the submit event from TimerForm as it bubbles up the component
hierarchy. First, we’ll modify ToggleableTimerForm. We need it to define and pass
down two prop-functions to TimerForm: onFormClose() and onFormSubmit().

Let’s update the component’s render() method first:

React Fundamentals 137

time-tracking/4/components/ToggleableTimerForm.js

render() {

const { isOpen } = this.state;

return (

<View

style={[styles.container, !isOpen && styles.buttonPadding]}

>

{isOpen ? (

<TimerForm

onFormSubmit={this.handleFormSubmit}

onFormClose={this.handleFormClose}

/>

) : (

<TimerButton

title="+"

color="black"

onPress={this.handleFormOpen}

/>

)}

</View>

);

}

We pass in two functions as props to TimerForm. As we’ve seen, functions are just
like any other prop.

Let’s write handleFormClose() first:

time-tracking/4/components/ToggleableTimerForm.js

handleFormClose = () => {

this.setState({ isOpen: false });

};

Now, what might handleFormSubmit() look like? ToggleableTimerForm is not the
manager of timer state. So ToggleableTimerForm should expect a new prop, onFormSubmit()

React Fundamentals 138

from App. ToggleableTimerForm should, in turn, pass this down to TimerForm. When
the user submits a form down in TimerForm, they’ll be invoking a function defined
up in App that modifies the timer state. ToggleableTimerForm is just a proxy of this
function.

So, we might be tempted to just pass this anticipated prop-function directly to
TimerForm like this:

<TimerForm

onFormSubmit={this.props.onFormSubmit}

onFormClose={this.handleFormClose}

/>

However, consider this: after the user clicks “Create” to create a timer, we actually
want to close ToggleableTimerForm. We’ll want to intercept this event so that we
can set isOpen to false.

To do this, here’s what handleFormSubmit() looks like:

time-tracking/4/components/ToggleableTimerForm.js

handleFormSubmit = timer => {

const { onFormSubmit } = this.props;

onFormSubmit(timer);

this.setState({ isOpen: false });

};

The handleFormSubmit() method accepts the argument timer and passes it along to
onFormSubmit(). Recall that in TimerForm this argument is an object containing the
desired timer properties. After invoking onFormSubmit(), handleFormSubmit() calls
setState() to close its form.

React Fundamentals 139

Although we’re not adding server communication in this chapter, let’s try
and visualize how submitting the form would work if we did.

The result of onFormSubmit() will not impact whether or not the form
is closed. We invoke onFormSubmit(), which may eventually create an
asynchronous call to a server. Execution will continue before we hear back
from the server which means setState() will be called.

If onFormSubmit() fails — such as if the server is temporarily unreachable
— we’d ideally have some way to display an error message and re-open the
form.

App

We’ve reached the top of the hierarchy, our root App component. As this component
will be responsible for the data for the timers, it is here that we will define the logic
for handling the events we’re capturing down at the lowest-level components.

The first event we’re concerned with is the submission of a form (i.e. events from
TimerForm). When this happens, either a new timer is being created or an existing
one is being updated. We’ll create two separate functions to handle these two distinct
events:

• handleCreateFormSubmit()will handle creating timers and will be the function
passed to ToggleableTimerForm

• handleFormSubmit() will handle updating timers and will be the function
passed to EditableTimer

Both functions travel down their respective component hierarchies until they reach
TimerForm as the prop onFormSubmit().

Let’s start with handleCreateFormSubmit().

Handling creates

handleCreateFormSubmit()will be the function Appwill supply to ToggleableTimerForm.
Let’s set that prop now:

React Fundamentals 140

time-tracking/3/App.js

<ToggleableTimerForm

onFormSubmit={this.handleCreateFormSubmit}

/>

Next, we’ll define the function.

For creating timers, we’ll be using the function newTimer() from utils/TimerUtils.js.
This just hides some logic, like generating ids. Here’s what it looks like:

time-tracking/utils/TimerUtils.js

export const newTimer = (attrs = {}) => {

const timer = {

title: attrs.title || 'Timer',

project: attrs.project || 'Project',

id: uuidv4(),

elapsed: 0,

isRunning: false,

};

return timer;

};

The function accepts an object with timer and project properties and returns a new
object with the rest of the properties properly initialized.

Import that function at the top of App.js:

time-tracking/3/App.js

import { newTimer } from './utils/TimerUtils';

Inside handleCreateFormSubmit(), we’ll use newTimer() to insert a new timer object
into state. Declare this function above render():

React Fundamentals 141

time-tracking/3/App.js

handleCreateFormSubmit = timer => {

const { timers } = this.state;

this.setState({

timers: [newTimer(timer), ...timers],

});

};

Note that we set this.state.timers to a new array of timers. The first element in the
array is our new timer, created with newTimer(). Then, we use JavaScript’s spread
syntax to add the rest of our existing timers to this new array. We do this to avoid
mutating state.

The tempting alternative is to write handleCreateFormSubmit() like this:

handleCreateFormSubmit = timer => {

const { timers } = this.state;

this.setState({

timers: timers.push(newTimer(timer)), // mutates state!

});

};

But .push() appends the new timer to the existing array in state. It’s subtle,
but this mutates state. And we never want to mutate state outside of the
this.setState() method.

We always want to treat the state object (and the objects and arrays inside
state) as immutable. Writing immutable JavaScript can be tricky at first. A
simple strategy is to just avoid using certain Array and Object methods.
.push() is one method to avoid, as it always mutates the array it is called
on.

If you still find the distinction between .push() and the spread syntax
confusing, don’t worry. We’ll be showcasing strategies for how to avoid
accidental state mutations throughout the book.

React Fundamentals 142

Spread syntax
In arrays, the ellipsis (…) will expand the array that follows into the parent
array. The spread operator enables us to succinctly construct new arrays as
a composite of existing arrays:

const a = [1, 2, 3];

const b = [4, 5, 6];

const c = [...a, ...b, 7, 8, 9];

console.log(c); // [1, 2, 3, 4, 5, 6, 7, 8, 9]

In objects, the ellipsis (…) will allow you to create a modified version of an
existing object:

const coffee = { milk: false, cream: false };

const coffeeWithMilk = { ...coffee, milk: true };

console.log(coffeeWithMilk); // { milk: true, cream: false }

This can be useful when working with immutable JavaScript objects.

Try it out

Now we’ve finished wiring up the create timer flow from the form down in
TimerForm up to the state managed in App. Save App.js and your app should reload.
Toggle open the create form and create some new timers:

React Fundamentals 143

Updating timers

Our app is setup for creating timers. Let’s add updates next.

We know we’ll eventually want App to define a handler, onFormSubmit(), for when
TimerForm submits a timer update. However, as you can see in the current state of
the app, we haven’t yet added the ability for a timer to be edited. We don’t yet have
a way to display an edit form which will be a prerequisite to submitting one.

To display an edit form, the user will press on the edit button on a Timer. This
should propagate an event up to EditableTimer and tell it to flip its child component,
opening the form.

We’ll work from the bottom-up again. We’ll start with Timer, specify the prop-
functions that it needs, then move up the component hierarchy.

Adding editability to Timer

Since we’ll be adding a fair bit of functionality to Timer, we’ll first convert it into a
class component:

React Fundamentals 144

time-tracking/4/components/Timer.js

export default class Timer extends React.Component {

EditableTimer manages the state of whether or not the edit form is open. So, we’ll
expect Timer to receive a prop from its parent, onEditPress(). We’ll set the onPress
prop on the “Edit” TimerButton to this prop:

time-tracking/4/components/Timer.js

render() {

const { elapsed, title, project, onEditPress } = this.props;

const elapsedString = millisecondsToHuman(elapsed);

return (

<View style={styles.timerContainer}>

<Text style={styles.title}>{title}</Text>

<Text>{project}</Text>

<Text style={styles.elapsedTime}>{elapsedString}</Text>

<View style={styles.buttonGroup}>

<TimerButton

color="blue"

small

title="Edit"

onPress={onEditPress}

/>

<TimerButton color="blue" small title="Remove" />

</View>

<TimerButton color="#21BA45" title="Start" />

</View>

);

}

Updating EditableTimer

Now we’re prepared to update EditableTimer. Again, it will display either the
TimerForm (if we’re editing) or an individual Timer (if we’re not editing).

React Fundamentals 145

Let’s add event handlers for both possible child components. For TimerForm, we want
to handle the form being closed or submitted. For Timer, we want to handle the edit
button being pressed:

time-tracking/4/components/EditableTimer.js

export default class EditableTimer extends React.Component {

state = {

editFormOpen: false,

};

handleEditPress = () => {

this.openForm();

};

handleFormClose = () => {

this.closeForm();

};

handleSubmit = timer => {

const { onFormSubmit } = this.props;

onFormSubmit(timer);

this.closeForm();

};

closeForm = () => {

this.setState({ editFormOpen: false });

};

openForm = () => {

this.setState({ editFormOpen: true });

};

We pass these event handlers down as props:

React Fundamentals 146

time-tracking/4/components/EditableTimer.js

render() {

const { id, title, project, elapsed, isRunning } = this.props;

const { editFormOpen } = this.state;

if (editFormOpen) {

return (

<TimerForm

id={id}

title={title}

project={project}

onFormSubmit={this.handleSubmit}

onFormClose={this.handleFormClose}

/>

);

}

return (

<Timer

id={id}

title={title}

project={project}

elapsed={elapsed}

isRunning={isRunning}

onEditPress={this.handleEditPress}

/>

);

}

Look a bit familiar? EditableTimer handles the same events emitted from TimerForm

in a similar manner as ToggleableTimerForm. This makes sense. Both EditableTimer

and ToggleableTimerForm are just intermediaries between TimerForm and App. App
is the one that defines the submit function handlers.

Like ToggleableTimerForm, EditableTimer doesn’t do anything with the incoming
timer. In handleSubmit(), it just blindly passes this object along to its prop-function
onFormSubmit(). It then closes the form with closeForm().

React Fundamentals 147

We pass along our new prop to Timer, onEditPress. The behavior for this function
is defined in handleEditPress, which modifies the state for EditableTimer, opening
the form.

Defining handleFormSubmit() in App

Like we did with handleCreateFormSubmit(), the last step with this pipeline is to
define a handler for edit form submits up in App, handleFormSubmit().

For creating timers, we have a function that creates a new timer object with the
specified attributes and we prepend this new object to the beginning of the timers
array in state.

For updating timers, we need to hunt through the timers array until we find the
timer object that is being updated. As always, the state object cannot be updated
directly. We have to use setState().

Therefore, we’ll use map() to traverse the array of timer objects. If the timer’s id
matches that of the form submitted, we’ll return a new object that contains the timer
with the updated attributes. Otherwise we’ll just return the original timer. This new
array of timer objects will be passed to setState():

time-tracking/4/App.js

handleFormSubmit = attrs => {

const { timers } = this.state;

this.setState({

timers: timers.map(timer => {

if (timer.id === attrs.id) {

const { title, project } = attrs;

return {

...timer,

title,

project,

};

}

React Fundamentals 148

return timer;

}),

});

};

Note that we call map() on timers from within the JavaScript object we’re passing to
setState(). This is an often used pattern. The call is evaluated and then the property
timers is set to the result. Inside of the map() function we check if the timermatches
the one being updated by comparing their id attributes. If not, we just return the
timer. Otherwise, we use the spread operator again to return a new object with the
timer’s updated attributes.

Remember, it’s important here that we treat state as immutable. By creating a new
timers object and then using the spread operator to populate it, we’re not modifying
any of the objects sitting in state.

We pass this method down as a prop inside render() to EditableTimer:

time-tracking/4/App.js

{timers.map(

({ title, project, id, elapsed, isRunning }) => (

<EditableTimer

key={id}

id={id}

title={title}

project={project}

elapsed={elapsed}

isRunning={isRunning}

onFormSubmit={this.handleFormSubmit}

/>

),

)}

As we did with ToggleableTimerForm and handleCreateFormSubmit, we pass down
handleFormSubmit as the prop onFormSubmit. TimerForm calls this prop, oblivious

React Fundamentals 149

to the fact that this function is entirely different when it is rendered underneath
EditableTimer as opposed to ToggleableTimerForm.

Try it out

Both of the forms are wired up! Save App.js, and after your app reloads, try both
creating and updating timers. You can also press “Cancel” on an open form to close
it:

Note that the keyboard might get in the way when you’re typing into an edit form.
We’ll address this at the end of the chapter by using the KeyboardAvoidingView

component in App.

The rest of our work resides within the timer. We need to:

• Wire up the “Remove” button
• Implement the start/stop buttons and the timing logic itself

Try it yourself

Feeling ambitious? Before moving on to the next section, see how far you
can get wiring up the “Remove” button by yourself. Move ahead afterwards
and verify your solution is sound.

React Fundamentals 150

Deleting timers

Adding the event handler to Timer

Aswith adding create and update functionality, we’ll work from the bottom-up.We’ll
start in Timer and work our way up to App. In App is where we’ll define the function
that removes the targeted timer from state.

In Timer, we’ll begin by defining the function for handling “Remove” button press
events:

time-tracking/5/components/Timer.js

handleRemovePress = () => {

const { id, onRemovePress } = this.props;

onRemovePress(id);

};

We’ve yet to define the function that will be set as the prop onRemovePress(). But
you can imagine that when this event reaches the top (App), we’re going to need
the id to sort out which timer is being deleted. The handleRemovePress() method
provides the id to this function.

We use onPress to connect that function to the “Remove” TimerButton:

time-tracking/5/components/Timer.js

<TimerButton

color="blue"

small

title="Remove"

onPress={this.handleRemovePress}

/>

React Fundamentals 151

Routing through EditableTimer

In EditableTimer, we include onRemovePress in the destructured props in the
component’s render method:

time-tracking/5/components/EditableTimer.js
render() {

const {

id,

title,

project,

elapsed,

isRunning,

onRemovePress,

} = this.props;

We then pass the function along to Timer:

time-tracking/5/components/EditableTimer.js
<Timer

id={id}

title={title}

project={project}

elapsed={elapsed}

isRunning={isRunning}

onEditPress={this.handleEditPress}

onRemovePress={onRemovePress}

/>

Implementing the remove function in App

The last step is to define the function in App that removes the desired timer from the
state array. There are many ways to accomplish this in JavaScript. If you attempted
to implement this solution on your own, don’t sweat it if your solution was not the
same.

We add our handler function that we will ultimately pass down as a prop:

React Fundamentals 152

time-tracking/5/App.js

handleRemovePress = timerId => {

this.setState({

timers: this.state.timers.filter(t => t.id !== timerId),

});

};

Here, we use the Array filter() method to return a new array without the timer
object that has an id matching timerId.

Finally, we pass down handleRemovePress() as a prop:

time-tracking/5/App.js

<EditableTimer

key={id}

id={id}

title={title}

project={project}

elapsed={elapsed}

isRunning={isRunning}

onFormSubmit={this.handleFormSubmit}

onRemovePress={this.handleRemovePress}

/>

Array filter()

Array filter() accepts a function that is used to “test” each element in the
array. It returns a new array containing all the elements that “passed” the
test. If the function returns true, the element is kept.

Try it out

Save App.js and reload the app. Now you can delete timers:

React Fundamentals 153

Adding timing functionality

Functionality for creating, updating, and deleting is now in place for our timers. The
next challenge: making these timers actually track time.

There are several different ways we can implement a timer system. The simplest
approach would be to have a function update the elapsed property on each timer
every second. This is why we’ve included the timer property isRunning. We can do
something like this:

this.setState({

timers: timers.map(timer => {

const { elapsed, isRunning } = timer;

return {

...timer,

elapsed: isRunning ? elapsed + 1000 : elapsed,

};

}),

});

React Fundamentals 154

We map through all the timers in state and check the value of isRunning. If
isRunning is true, we can add 1000 milliseconds (or 1 second) to elapsed.

Now, to make this work we’ll need to do this every second. We can use JavaScript’s
setInterval() to execute this function on an interval.

Let’s set up our interval in componentDidMount:

time-tracking/6/App.js

componentDidMount() {

const TIME_INTERVAL = 1000;

this.intervalId = setInterval(() => {

const { timers } = this.state;

this.setState({

timers: timers.map(timer => {

const { elapsed, isRunning } = timer;

return {

...timer,

elapsed: isRunning ? elapsed + TIME_INTERVAL : elapsed,

};

}),

});

}, TIME_INTERVAL);

}

setInterval() accepts two arguments. The first argument is the function we’d
like executed on an interval. Here, we’re performing the logic to update elapsed.
The second argument is the length of the interval (or the delay between function
invocations). We set that to TIME_INTERVAL, 1000 milliseconds.

We also capture the return value of setInterval(), setting the component variable
this.intervalId. This special identifier allows us to stop the interval at any point
in the future using JavaScript’s corresponding clearInterval(). We’ll want to
cancel (or “clear”) this interval if the timer component is ever unmounted (deleted).

React Fundamentals 155

Otherwise, our function will run on indefinitely and cause errors. We can use the
componentWillUnmount lifecycle hook for this:

time-tracking/6/App.js

componentWillUnmount() {

clearInterval(this.intervalId);

}

This is the first time we’re using componentWillUnmount. Like the name suggests, this
method fires right before a component is unmounted or removed. In this example,
we use clearInterval() to cancel the logic that updates our timers.

Using setInterval() when a component mounts and clearInterval() when a
component unmounts is a common pattern in React apps that require interval events.

In our version of the app, App will never be unmounted. However, it is
still best practice to clear any intervals when a component unmounts. This
“future proofs” our app. There are many libraries, like “hot reloading” li-
braries, that would cause even the app’s main component to be unmounted
and re-mounted.

Although this timer implementation works for our purposes, it is not the
most accurate. There is no guarantee that timers will be updated precisely
every 1000 milliseconds and we lose accuracy around starts and stops.

An example of a more precise approach would be defining a separate
timer attribute, like runningSince. We could then derive how long a
timer has been running by calculating the difference between the value
of runningSince and the current time. If we saved this value somewhere,
it would also allow our timers to continue “running” even while the app is
closed.

React Fundamentals 156

Add start and stop functionality

With our interval in place, we just need to add the ability to flip the isRunning

boolean on a given timer.

The action button at the bottom of each timer should display “Start” if the timer is
paused and “Stop” if the timer is running. These presses will invoke functions defined
in App that will modify isRunning.

Add timer action events to Timer

We’ll start at the bottom again with Timer.

We’ll anticipate two prop-functions, onStartPress() and onStopPress(). Let’s write
the button press event handlers that will call these functions first:

time-tracking/6/components/Timer.js

handleStartPress = () => {

const { id, onStartPress } = this.props;

onStartPress(id);

};

handleStopPress = () => {

const { id, onStopPress } = this.props;

onStopPress(id);

};

We’re propagating the id property up to App so it knows which timer to start or stop.

Inside render(), we’ll anticipate a renderActionButton()method that conditionally
shows the correct button based on whether the timer is running or has stopped:

React Fundamentals 157

time-tracking/6/components/Timer.js

render() {

const { elapsed, title, project, onEditPress } = this.props;

const elapsedString = millisecondsToHuman(elapsed);

return (

<View style={styles.timerContainer}>

<Text style={styles.title}>{title}</Text>

<Text>{project}</Text>

<Text style={styles.elapsedTime}>{elapsedString}</Text>

<View style={styles.buttonGroup}>

<TimerButton

color="blue"

small

title="Edit"

onPress={onEditPress}

/>

<TimerButton

color="blue"

small

title="Remove"

onPress={this.handleRemovePress}

/>

</View>

{this.renderActionButton()}

</View>

);

}

Now let’s set up the JSX rendered within this method:

React Fundamentals 158

time-tracking/6/components/Timer.js

renderActionButton() {

const { isRunning } = this.props;

if (isRunning) {

return (

<TimerButton

color="#DB2828"

title="Stop"

onPress={this.handleStopPress}

/>

);

}

return (

<TimerButton

color="#21BA45"

title="Start"

onPress={this.handleStartPress}

/>

);

}

We could write this conditional inside of the component’s render() method. But, as
we briefly mentioned in the previous chapter, a common pattern in React is to use
helper methods to do this. Sometimes this helps with code clarity and readability.
In renderActionButton(), we specifically render one button or another based on
this.props.isRunning.

Now we’ll need to run these events up the component hierarchy, all the way up to
App where we’re managing state.

Run the events through EditableTimer

In EditableTimer, we’ll need to pass onStartPress and onStopPress to Timer:

React Fundamentals 159

time-tracking/6/components/EditableTimer.js
render() {

const {

id,

title,

project,

elapsed,

isRunning,

onRemovePress,

onStartPress,

onStopPress,

} = this.props;

const { editFormOpen } = this.state;

if (editFormOpen) {

return (

<TimerForm

id={id}

title={title}

project={project}

onFormSubmit={this.handleSubmit}

onFormClose={this.handleFormClose}

/>

);

}

return (

<Timer

id={id}

title={title}

project={project}

elapsed={elapsed}

isRunning={isRunning}

onEditPress={this.handleEditPress}

onRemovePress={onRemovePress}

onStartPress={onStartPress}

onStopPress={onStopPress}

React Fundamentals 160

/>

);

}

We can define a single function that handles these props in App. It should hunt
through the state timers array using map, flipping isRunning when it finds the
matching timer:

time-tracking/6/App.js

toggleTimer = timerId => {

this.setState(prevState => {

const { timers } = prevState;

return {

timers: timers.map(timer => {

const { id, isRunning } = timer;

if (id === timerId) {

return {

...timer,

isRunning: !isRunning,

};

}

return timer;

}),

};

});

};

When toggleTimer comes across the relevant timer within its map call, it sets the
property isRunning to the opposite of its value. This means it will stop a running
timer and start a stopped timer.

Finally, we pass this function down to EditableTimer in the render method:

React Fundamentals 161

time-tracking/6/App.js

<EditableTimer

key={id}

id={id}

title={title}

project={project}

elapsed={elapsed}

isRunning={isRunning}

onFormSubmit={this.handleFormSubmit}

onRemovePress={this.handleRemovePress}

onStartPress={this.toggleTimer}

onStopPress={this.toggleTimer}

/>

Try it out

Save App.js, wait for the app to reload, and behold: you can now create, update, and
delete timers as well as actually use them to time things!

Again, for this app we won’t add server communication. Without it, our app’s data
is ephemeral. If we reload the app, the timers will reset.

React Fundamentals 162

Wrapping App in KeyboardAvoidingView

A behavioral quirk in our app so far has been that the keyboard can get in the way
when we edit a timer. As we saw in the first chapter, we can wrap our app in a
KeyboardAvoidingView component to address this.

In App.js, first import the component:

time-tracking/6/App.js

import React from 'react';

import uuidv4 from 'uuid/v4';

import {

StyleSheet,

View,

ScrollView,

Text,

KeyboardAvoidingView,

Next, wrap the ScrollView component with it:

time-tracking/6/App.js

render() {

const { timers } = this.state;

return (

<View style={styles.appContainer}>

<View style={styles.titleContainer}>

<Text style={styles.title}>Timers</Text>

</View>

<KeyboardAvoidingView

behavior="padding"

style={styles.timerListContainer}

>

<ScrollView contentContainerStyle={styles.timerList}>

<ToggleableTimerForm

React Fundamentals 163

onFormSubmit={this.handleCreateFormSubmit}

/>

{timers.map(

({ title, project, id, elapsed, isRunning }) => (

<EditableTimer

key={id}

id={id}

title={title}

project={project}

elapsed={elapsed}

isRunning={isRunning}

onFormSubmit={this.handleFormSubmit}

onRemovePress={this.handleRemovePress}

onStartPress={this.toggleTimer}

onStopPress={this.toggleTimer}

/>

),

)}

</ScrollView>

</KeyboardAvoidingView>

</View>

);

}

Finally, add this style to the styles object:

time-tracking/6/App.js
timerListContainer: {

flex: 1,

},

Our ScrollViewwill now accommodate the keyboard when we start typing into text
inputs.

To finish up, let’s add PropTypes to our components. As discussed in the previous
chapter, PropTypes are nice to have in place when making additions or changes to a
React Native app.

React Fundamentals 164

PropTypes

Let’s add PropTypes to each of our components beginning with EditableTimer:

time-tracking/components/EditableTimer.js

export default class EditableTimer extends React.Component {

static propTypes = {

id: PropTypes.string.isRequired,

title: PropTypes.string.isRequired,

project: PropTypes.string.isRequired,

elapsed: PropTypes.number.isRequired,

isRunning: PropTypes.bool.isRequired,

onFormSubmit: PropTypes.func.isRequired,

onRemovePress: PropTypes.func.isRequired,

onStartPress: PropTypes.func.isRequired,

onStopPress: PropTypes.func.isRequired,

};

For this component, all our props are required as we’re expecting App to always set
them. Now let’s take a look at Timer:

time-tracking/components/Timer.js

export default class Timer extends Component {

static propTypes = {

id: PropTypes.string.isRequired,

title: PropTypes.string.isRequired,

project: PropTypes.string.isRequired,

elapsed: PropTypes.number.isRequired,

isRunning: PropTypes.bool.isRequired,

onEditPress: PropTypes.func.isRequired,

onRemovePress: PropTypes.func.isRequired,

onStartPress: PropTypes.func.isRequired,

onStopPress: PropTypes.func.isRequired,

};

React Fundamentals 165

Similarly, we know each of the props for Timer should always be provided by
EditableTimer. Let’s add PropTypes and defaultProps for TimerButton:

time-tracking/components/TimerButton.js

TimerButton.propTypes = {

color: ColorPropType.isRequired,

title: PropTypes.string.isRequired,

small: PropTypes.bool,

onPress: PropTypes.func.isRequired,

};

TimerButton.defaultProps = {

small: false,

};

small is an optional prop with a default value of false. Our other props are all
required. We’re also using ColorPropType for our color prop in order to correctly
validate if an appropriate color⁴⁸ is passed in. We’ll need to import it at the top of our
file from react-native as well.

Our last two components that need prop validations are our form components. Let’s
begin with TimerForm:

time-tracking/components/TimerForm.js

export default class TimerForm extends React.Component {

static propTypes = {

id: PropTypes.string,

title: PropTypes.string,

project: PropTypes.string,

onFormSubmit: PropTypes.func.isRequired,

onFormClose: PropTypes.func.isRequired,

};

static defaultProps = {

id: null,

⁴⁸https://facebook.github.io/react-native/docs/next/colors.html

https://facebook.github.io/react-native/docs/next/colors.html
https://facebook.github.io/react-native/docs/next/colors.html

React Fundamentals 166

title: '',

project: '',

};

For this component, we only pass in timer attributes (id, title, and project) if we’re
editing a timer form and not creating one. We’ve added appropriate default values
for each. Now for ToggleableTimerForm:

time-tracking/components/ToggleableTimerForm.js

export default class ToggleableTimerForm extends Component {

static propTypes = {

onFormSubmit: PropTypes.func.isRequired,

};

This component only takes a single required prop, onFormSubmit, which fires when
we submit our timer form.

Methodology review

While building our time-tracking app, we learned and applied a methodology for
building React apps. Again, those steps were:

1. Break the app into components

We mapped out the component structure of our app by examining the app’s
working UI. We then applied the single-responsibility principle to break com-
ponents down so that each had minimal viable functionality.

2. Build a static version of the app

Our bottom-level (user-visible) components rendered JSX based on static props,
passed down from parents.

3. Determine what should be stateful

We used a series of questions to deduce what data should be stateful. This data
was represented in our static app as props.

React Fundamentals 167

4. Determine in which component each piece of state should live

We used another series of questions to determine which component should
own each piece of state. App owned timer state data and ToggleableTimerForm

and EditableTimer both held state pertaining to whether or not to render a
TimerForm.

5. Hardcode initial states

For the components that own state, we initialized state properties with
hardcoded values.

6. Add inverse data flow

We added interactivity by decorating buttons with onPress handlers. These
called functions thatwere passed in as props down the hierarchy fromwhichever
component owned the relevant state being manipulated.

If we were planning to add server communication to our application, it would make
sense to do it now givenwe’ve completed setting up the base of our entire application.

Up next

With the first chapter, we explored the basics of React Native by building a weather
app. In this chapter, we dove deeper into the fundamentals of the React API by
creating a more interactive application with more components. Although we covered
a number of important concepts including a useful pattern for building React Native
apps from scratch, we’ve so far only briefly covered each of React Native’s built-in
components, like View and Text. Over the next two chapters, we’ll examine a number
of React Native’s core components in greater detail.

Core Components, Part 1
What are components?

Components are the building blocks of any React Native application. We used
components like View and Text throughout the previous chapters to create the
UI for our weather app and our timer app. Out-of-the-box, React Native includes
components for everything from form controls to rich media.

Up to this point, we’ve been using React Native components without fully exploring
how they work. In this chapter, we’ll study the most common built-in React Native
components. Just as in the previous chapters, we’ll build an application as we go.
When we come across a new topic, we’ll deep dive into that topic before we keep
building. At the end of the chapter, you should have a solid foundation of knowledge
for using any React Native component – even the ones we don’t cover will follow
many of the same patterns.

UI abstraction

Components are an abstraction layer on top of the underlying native platform. On
an iOS device, a React Native component is ultimately rendered as a UIView. On
Android, the same component would be rendered as an android.view. As React
Native expands to new platforms, the same code should be able to render correctly
on more and more devices.

React Native is already supported on the universal Windows platform⁴⁹,
Apple TV (part of the main react-native repository⁵⁰), React VR⁵¹, and the
web⁵².

⁴⁹https://github.com/Microsoft/react-native-windows
⁵⁰https://github.com/facebook/react-native
⁵¹https://facebook.github.io/react-vr/
⁵²https://github.com/necolas/react-native-web

https://github.com/Microsoft/react-native-windows
https://github.com/facebook/react-native
https://facebook.github.io/react-vr/
https://github.com/necolas/react-native-web
https://github.com/Microsoft/react-native-windows
https://github.com/facebook/react-native
https://facebook.github.io/react-vr/
https://github.com/necolas/react-native-web

Core Components, Part 1 169

As you start building complex apps, you’ll likely run into cases where youwant to use
a feature that exists on one platform but not the other. Platform-specific components
exist for cases like these. Generally, the component’s name will end with the name
of the platform e.g. NavigatorIOS. As we mentioned in the “Getting Started”, there
are several ways to run different code on different platforms – you will need to do
this for platform-specific components.

Building an Instagram clone

In this chapter, we’ll use the most common React Native components to build an
app that resembles Instagram. We’ll build the main image feed with the components
View, Text, Image and FlatList. We’ll also build a comments screen using TextInput
and ScrollView.

To try the completed app on your phone:

• On Android, you can scan this QR code from within the Expo app:

• On iOS, you can navigate to the image-feed/ directory within our sample code
folder and build the app using the same process in previous chapters. You can
either preview it using the iOS simulator or send the link of the project URL to
your device.

Our app will have two screens. The first screen is the image feed:

Core Components, Part 1 170

The second screen opens when we tap “3 comments” to display comments for that
image:

Core Components, Part 1 171

Project setup

Just as we did in the previous chapters, let’s create a new app with the following
command:

$ expo init image-feed --template blank@sdk-36 --yarn

Once this finishes, navigate into the image-feed directory.

Choose one of the following to start the app:

• yarn start - Start the Packager and display a QR code to open the app on your
Android phone

• yarn ios - Start the Packager and launch the app on the iOS simulator
• yarn android - Start the Packager and launch the app on the Android emulator

Core Components, Part 1 172

You should see the default App.js file running, which looks like this:

Now’s a good time to copy over the image-feed/utils directory from the sample
code into your own project. Copy the utils directory into the image-feed directory
we just created.

How we’ll work

In this chapter, we’ll build our app following the same methodology as the previous
chapter. We’ll break the app into components, build them statically, and so on. We
won’t specifically call out each step, since it isn’t necessary to follow them exactly.
They’re most useful as a reference for when you’re unsure what to do next.

If at any point you get stuck when building an app of your own, consider
identifying which steps you’ve completed, and following the steps more
closely until you’re back on track.

Core Components, Part 1 173

Breaking down the feed screen

We want to start thinking about our app in terms of the different components of our
UI. Ultimately our app will render built-in components like View and Text, but as we
learned in the previous chapter, it’s useful to build higher levels of abstraction on top
of these. Let’s start by figuring out how our main image feed might break down into
components.

A good component is generally concise and self-contained. By looking at the
screenshot we are trying to build, we can identify which pieces are reasonably
distinct from others and reused in multiple places. Since we’re only building a couple
screens, we won’t be able to make fully informed decisions about which parts of the
screenshots are most reusable as we don’t know what the other screens in the app
will look like. But we can make some pretty good guesses. Here’s one way we can
break down the main feed:

Core Components, Part 1 174

• Avatar - The profile photo or initials of the author of the image
• AuthorRow - The horizontal row containing info about the author: their avatar
and their name

• Card - The item in the image feed containing the image and info about its author
• CardList - The list of cards in the feed

Each of these build upon one another: CardList contains a list of Card components,
which each contain an AuthorRow, which contains an Avatar.

Top-down vs. bottom-up

When it comes to building the UI components of an app, there are generally two
approaches: top-down and bottom-up. In a top-down approach, we would start by

Core Components, Part 1 175

building the CardList component, and then we would build the components within
the CardList, and then the components within those, and so on until we reach the
inner-most component, Avatar. In a bottom-up approach, we would start with the
innermost components like Avatar, and keep building up higher levels of abstraction
until we get to the CardList. Choosing between these two approaches is mostly
personal preference, and it’s common to do a little of both.

For this app, we’re going to work bottom-up. We’ll start with the Avatar component,
and then build the AuthorRow which uses it, and so on.

Unlike the last chapter, we’ll focus on building one component at a time, testing each
one as we go. We can modify App.js to render just the component we’re currently
working on.

As an example, if we were to do this for the Avatar component, we might modify
the App.js file to render just the Avatar:

// Inside App.js

render() {

return <Avatar />;

}

We might also hardcode different kinds of props for testing:

// Inside App.js

render() {

return (

<Avatar

initials="FL"

size={35}

backgroundColor={'blue'}

/>

);

}

Isolating individual components like this is a useful technique when working with
styles. A component’s layout can change based on its parent – if we build a

Core Components, Part 1 176

component within a specific parent, we may end up with styles that closely couple
the parent and child. This isn’t ideal, since we want our components to look accurate
within any parent for better reusability. We can easily ensure that components work
well anywhere by building components at the top level of the view hierarchy, since
the top level has the default layout configuration.

Now that we have our strategy locked down, let’s start with the Avatar component.

Avatar

Here’s what the Avatar should look like, when rendered in isolation:

For simple apps, it’s easiest to keep all of our components together in a components

directory. For more advanced apps, we might create directories within components

to categorize them more specifically. Since this app is pretty simple, let’s use a flat
components directory, just like we did in the previous chapters.

Let’s create a new directory called components and create a new file within that called
Avatar.js.

Core Components, Part 1 177

Our avatar component is going to render the components View and Text. It’s going
to use StyleSheet, and it’s going to validate strings, numbers, and color props with
PropTypes. Let’s import these things at the top of the file. We also have to import
React.

We’ll import React in this file, even though we don’t reference it any-
where. Behind-the-scenes, babel compiles JSX elements into calls to
React.createElement, which reference the React variable.

Add the following imports to Avatar.js:

image-feed/1/components/Avatar.js

import { ColorPropType, StyleSheet, Text, View } from 'react-native';

import PropTypes from 'prop-types';

import React from 'react';

We import ColorPropType from react-native rather than PropTypes. The
PropTypes package contains validators for primitive JavaScript types like
numbers and strings. While colors in React Native are strings, they follow
a specific format that can be validated – React Native provides a handful of
validators like ColorPropType for validating the contents of a value rather
than just its primitive type.

Now we can export the skeleton of our component:

image-feed/1/components/Avatar.js

export default function Avatar({ /* ... */ }) {

// ...

}

Since this component won’t need to store any local state, we’ll use the stateless
functional component style that we learned about in the previous chapter.

What should the props be for our avatar? We definitely need the initials to render.
We also probably want the size and background color to be configurable. With that
in mind, we can define our propTypes like this:

Core Components, Part 1 178

image-feed/1/components/Avatar.js

// ...

export default function Avatar({ size, backgroundColor, initials }) {

// ...

}

Avatar.propTypes = {

initials: PropTypes.string.isRequired,

size: PropTypes.number.isRequired,

backgroundColor: ColorPropType.isRequired,

};

// ...

In this app, we’ll make most of our props required using isRequired, since we’ll
always pass every prop. If we wanted to make our component more reusable, we
could instead make its props optional – but it’s hard to know which props should be
optional until we actually try to reuse it!

It’s time to render the contents of our Avatar. For the colored circular background,
we’ll render a View. The View is the most common and versatile component. We’ve
already used it throughout the previous chapters, but now let’s take a closer look at
how it works and how to style it.

View

There are two fairly distinct things we use View for:

• First, we use View for layout. A View is commonly used as a container for
other components. If we want to arrange a group of components vertically or
horizontally, we will likely wrap those components in a View.

• Second, we use View for styling our app. If we want to render a simple shape like
a circle or rectangle, or if we want to render a border, a line, or a background
color, we will likely use a View.

Core Components, Part 1 179

React Native components aim to be as consistent as possible – many components use
similar props as the View, such as style. Because of this, if you learn how to work
with View, you can reuse that knowledge with Text, Image, and nearly every other
kind of component.

Avatar background

Let’s use View to create the circular background for our Avatar:

image-feed/1/components/Avatar.js

// ...

export default function Avatar({ size, backgroundColor, initials }) {

const style = {

width: size,

height: size,

borderRadius: size / 2,

backgroundColor,

}

return (

<View style={style} />

)

}

// ...

As we saw in previous chapters, we can use the style prop to customize the
dimensions and colors of our View component. Here, we instantiate a new object
that we pass to the style prop of our View. We can assign the size prop to the
width and height attributes to specify that our View should always be rendered as a
perfect square. Adding a borderRadius that’s half the size of the width and height

will render our View as a circle. Lastly, we set the background color.

In this style object, the attributes are computed dynamically: width, height, borderRadius,
and backgroundColor are all derived from the component’s props. Whenwe compute

Core Components, Part 1 180

style objects dynamically (i.e. when rendering our component), we define them inline
– this means we create a new style object every time the component is rendered, and
pass it directly to the style prop of our component.

When there are a lot of style objects defined inline, it can clutter the render method,
making the code harder to follow. For styles which aren’t computed dynamically, we
should use the StyleSheet API. We’ll practice this more in the next few sections.

Before that, let’s make sure what we have so far is working correctly.

Try it out

Let’s add our Avatar component to App. We haven’t finished Avatar yet, but it’s
useful to test as we go in case we’ve introduced any errors.

Open up App.js and import our Avatar after our other imports:

image-feed/1/App.js

import Avatar from './components/Avatar';

Next, modify the render function to render an Avatar:

image-feed/1/App.js

// ...

export default class App extends React.Component {

render() {

return (

<View style={styles.container}>

<Avatar initials={'FL'} size={35} backgroundColor={'teal'} />

</View>

);

}

}

// ...

Core Components, Part 1 181

For any props we didn’t include, the Avatar will use its defaultProps. We should
see a 35px teal circle in the center of the screen:

Regardless of the size of your screen, the teal circle will render in the center. This
means React Native is calculating the center of the screen, calculating the dimensions
of the Avatar, and using these calculations to properly position the View component.
As we learned in the “Getting Started” chapter, the React Native layout engine is
based on the flexbox algorithm. Let’s start digging into how layout works: how
does React Native know the dimensions for each component and where to render it
on the screen?

Dimensions

The first thing we want to think about when understanding the layout of a screen is
the dimensions of each component. A component must have both a non-zero width

and height in order to render anything on the screen. If the width is 0, then nothing
will render on the screen, no matter how large the height is.

Core Components, Part 1 182

In our Avatar example, we rendered our View with fixed dimensions by specifying
an exact width and height as part of the style prop. This is the simplest way to
specify component dimensions. Our Viewwill always render at exactly 35px by 35px,
regardless of the screen size or the components within it.

In the case of Avatar, this is exactly the behavior we want. However, in many cases
we want our layout to automatically adapt to different screen sizes.

Our App renders a View that fills the entire screen, yet we never specified a fixed
width or height. If you look at the StyleSheet.create call at the bottom of App.js,
you’ll see the style attribute flex: 1.

image-feed/1/App.js

const styles = StyleSheet.create({

container: {

flex: 1,

backgroundColor: '#fff',

alignItems: 'center',

justifyContent: 'center',

},

});

We can use flex to adapt our layout to different screen sizes.

Flex

The flex style attribute gives us the ability to define layouts that can expand and
shrink automatically based on screen size. The flex value is a number that represents
the ratio of space that a component should take up, relative to its siblings.

If a component has no siblings, as in the case of the top-level View rendered by App,
things are straightforward:

• with a flex of 1, the component will expand to fill its parent entirely
• with a flex value of 0, the component will shrink to the minimum space
possible (just large enough for the component’s children to be visible, if it has
any)

Core Components, Part 1 183

Since the View in App has a flex value of 1, it expands to fill its parent, which in this
case is the entire screen. Now we know why this View expands to fill the screen, but
how does React Native know to render the Avatar (and its underlying View) in the
center of the screen?

Layout

We can apply three style attributes to a parent component in order to specify the
layout of its children. That is, we can specify where children render within a parent.
The attributes are:

• flexDirection

• justifyContent

• alignItems

With these attributes, we can achieve nearly any kind of layout.

flexDirection

The first attribute is flexDirection. The flexDirection we choose defines the pri-
mary axis. Children components are laid out along the primary axis. The orthogonal
axis is called the secondary axis. The possible values for flexDirection are:

• column: for a vertical layout (the default)
• row: for a horizontal layout
• column-reverse: the same as column but flipped vertically
• row-reverse: the same as row but flipped horizontally

Core Components, Part 1 184

The names are a little confusing at first, because when you hear “row”, you
might think we’ll get a layout withmultiple rows – but in fact, this is saying
that our layout is a row.

justifyContent

Next we’ll use the justifyContent attribute to distribute children along the primary
axis. The possible values are:

• flex-start: Distribute children at the start of the primary axis (the default)
• flex-center: Distribute children at the center of the primary axis
• flex-end: Distribute children at the end of the primary axis
• space-around: Distribute children evenly, including space at the edges

Core Components, Part 1 185

• space-between: Distribute children evenly, without any space at the edges

The following diagram depicts the possible values for justifyContent in both row

and column layouts. Remember, the flexDirection sets the primary and orthogonal
axes, so our choice of flexDirectionwill determine themeaning of justifyContent.

alignItems

Lastly, we’ll use the alignItems attribute to align children along the secondary axis.
Possible values are:

• flex-start: Align children at the start (the default)
• flex-center: Align children at the center
• flex-end: Align children at the end
• stretch: Stretch children to fill the entire width/height of the secondary axis

Core Components, Part 1 186

The following diagram depicts the possible values for alignItems, in both row and
column layouts.

Take another look at the container style in StyleSheet.create at the bottom of
App.js:

Core Components, Part 1 187

image-feed/1/App.js

const styles = StyleSheet.create({

container: {

flex: 1,

backgroundColor: '#fff',

alignItems: 'center',

justifyContent: 'center',

},

});

Let’s figure out how this style centers the Avatar within the View. This style object
doesn’t contain a value for the flexDirection attribute, so instead it’ll use the default
value, column. This means the primary axis is the vertical axis and the secondary axis
is the horizontal axis. The justifyContent: 'center' distributes the Avatar to the
center of the vertical axis. The alignItems: 'center' aligns the Avatar in the center
of the horizontal axis.

Flex and the primary axis

Now that we know how flexDirection and axes work, let’s revisit how this top-level
View uses flex to fill the entire screen.

The flex attribute of a component determines only its dimension along the primary
axis. This means that, just like for justifyContent and alignItems, we need to know
what the flexDirection is in order to use flex correctly.

In the case of our View in App, it’s best to imagine this View is actually the child of
another wrapper View that fills the entire screen. This wrapper View has the default
style attributes for flexDirection, justifyContent, and alignItems. In other words,
the top-level View that we render is actually inside a parent with style:

Core Components, Part 1 188

{

flexDirection: 'column',

justifyContent: 'flex-start',

alignItems: 'stretch'

}

Our top-level View has a fullscreen height because we specify flex: 1, which
stretches it across the vertical axis. It has a fullscreen width because its parent uses
alignItems: 'stretch', which stretches the View across the horizontal axis.

What to do if a component doesn’t show up
Beginners and experts alike frequently run into the problem where a component
doesn’t render anything on the screen. The most common reason for this is that the
component has dimensions equal to 0.

When using flex: 0 or no flex attribute, a component will only have a dimension
greater than 0 along the primary axis if given explicitly (using a width or height
attribute) or if its children have dimensions greater than 0. Similarly, when using
alignItems: 'stretch', a child will only have dimensions greater than 0 along the
secondary axis if given explicitly or if the parent has dimensions greater than 0.

Thus, when a component doesn’t show up on the screen, the first thing we should
do is pass an explicit width and height style attribute (and also a backgroundColor,
just to make sure something is visible). Once a component appears on the screen,
we can start understanding the component hierarchy and evaluating how to tweak
our styles.

StyleSheet

Now that we have a better understanding of layouts, lets get back to creating our
Avatar component. As a reminder, here’s what we’re aiming for:

Core Components, Part 1 189

The next thing we’ll want to add is the text within the circular View. The text should
be centered, which we now know how to do using justifyContent and alignItems.
Let’s do that now.

We previously used an inline style object for the style prop of View. For styles which
don’t need to be computed dynamically based on props, such as centering the content
within the View, we generally use a StyleSheet at the bottom of the file. Let’s go
ahead and update Avatar.js with the following:

Core Components, Part 1 190

image-feed/1/components/Avatar.js

// ...

export default function Avatar({ size, backgroundColor, initials }) {

const style = {

width: size,

height: size,

borderRadius: size / 2,

backgroundColor,

};

return (

<View style={[styles.container, style]} />

);

}

const styles = StyleSheet.create({

container: {

alignItems: 'center',

justifyContent: 'center',

},

});

In React Native, styles are most often defined below the component code in
the same file. When reading a file, generally the component is the primary
concern, and styles are secondary – this is why we put the component code
first. This works because the variable name styles is hoisted to the top of
the file, and the code which defines its value is executed before the code
that accesses its value. As you may have noticed, we’ve been doing this
since the start of the book, and we’ll continue to do it throughout.

In this case, we always want the text to be centered on both axes, so we’ll use
justifyContent: 'center' and alignItems: 'center'. As we saw in the “Getting
Started” chapter, we can merge both of our style objects together by passing an array
as the style prop of View.

Core Components, Part 1 191

When centering a single child component within a View like this, any
flexDirection will result in the same layout, so we can use either.

Now that we’ve centered the contents of our View, let’s add the text for the initials.
We’ll use Text for this. We’ve used Text before, but let’s take a step back and look at
it in-depth before we add it to our avatar.

Text

We use the Text component to render text on the screen. Text can be styled with
font-specific attributes such as fontSize. It can use nearly all of the same styles as
View, such as backgroundColor and width. However, Text has some key differences
when it comes to layout.

Text dimensions

Unlike the View component, Text components have an intrinsic size. In other words,
if we don’t specify a width or height, a Text component will still show up on the
screen. If we were to put a background color behind it to visualize the width and
height, we could see that the background is exactly the size of the text we see (plus
or minus a little space, depending on the line height).

Rendering a Text component with:

<Text style={{ backgroundColor: 'red' }}>

Hello World

</Text>

Gives us:

Core Components, Part 1 192

Specifying a width, height, or flex attribute as part of the style will override the
intrinsic dimensions of the Text. Rendering a Text component with:

<Text style={{ backgroundColor: 'red', width: 60, height: 60 }}>

Hello World

</Text>

Gives us:

Core Components, Part 1 193

Text context will automatically wrap around by default when it fills the width of the
component. This is configurable with the numberOfLines prop.

Common Text props and styles

Here are a few common style attributes that you might want to use with text:

• color - A string representing the color of the text.
• fontFamily - A string with the name of the font family (this font family must
already exist on the device).

• fontSize - A number value equal to the size of the font in points.
• fontStyle - Either 'normal' or 'italic'.
• fontWeight - The thickness of each character. One of 'normal', 'bold', '100',
'200', '300', '400', '500', '600', '700', '800', or '900'. If the chosen weight
isn’t available on the device, the nearest available weight will be used instead).

• textAlign - The text alignment. One of 'left', 'right', 'center', 'justify'
(iOS only), 'auto'.

Core Components, Part 1 194

In addition, we use the following props frequently:

• numberOfLines - The number of lines to allow before truncating the text.
• ellipsizeMode - How text should be truncated when it exceeds numberOfLines.
One of 'head', 'middle', 'tail', 'clip' (iOS only).

You can find the full list of props and styles for Text in the official docs⁵³.

Like View elements, Text elements can have children. This is useful when you want
to have multiple styles of text within the same paragraph. The Text element will
inherit styles from its parent. If the parent has a fontSize of 16 and color of blue, a
child Text element will have the same styles by default. The child Text element can
be styled to override its parent’s styles as needed.

Adding Text to Avatar

Let’s render and style a Text component to display the initials in the Avatar

component:

image-feed/1/components/Avatar.js

// ...

export default function Avatar({ size, backgroundColor, initials }) {

const style = {

width: size,

height: size,

borderRadius: size / 2,

backgroundColor,

}

return (

<View style={[styles.container, style]}>

<Text style={styles.text}>{initials}</Text>

</View>

⁵³https://facebook.github.io/react-native/docs/text.html

https://facebook.github.io/react-native/docs/text.html
https://facebook.github.io/react-native/docs/text.html

Core Components, Part 1 195

);

}

// ...

const styles = StyleSheet.create({

container: {

alignItems: 'center',

justifyContent: 'center',

},

text: {

color: 'white',

},

});

After saving Avatar.js, you should see the following:

Core Components, Part 1 196

Since we don’t want our content centered on the screen, let’s update the styles
in App.js to render content starting at the top left. We can do this by remov-
ing alignItem and justifyContent. Since we’re in a View with flexDirection:

"column" (the default), we can use justifyContent: "flex-start" (also the default)
to distribute content starting at the top of the screen.

We also want to leave room at the top of the screen for the status bar. We’ll install
and import expo-constants so we can use the constant statusBarHeight.

Since we used expo-init to create our app, we can use any expo-prefixed
libraries within it. There’s usually a similar library available for use outside
of expo if needed, e.g. react-native-status-bar⁵⁴ in this case.

To install expo-constants, run:

$ expo install expo-constants

Add the following import to the top of App.js:

image-feed/1/App.js

import Constants from 'expo-constants';

Then update the container style at the bottom of the file to:

image-feed/1/App.js

// ...

const styles = StyleSheet.create({

container: {

marginTop: Constants.statusBarHeight,

flex: 1,

backgroundColor: '#fff',

},

});

⁵⁴https://www.npmjs.com/package/react-native-status-bar-height

https://www.npmjs.com/package/react-native-status-bar-height
https://www.npmjs.com/package/react-native-status-bar-height

Core Components, Part 1 197

Now we should see our avatar at the top left of the screen, sitting just below the
status bar.

In order to create the Avatar, we covered View, Text, StyleSheet, and layout with
flexbox. These are the built-in components and APIs required to build nearly any
custom component in React Native. We’ll spend most of the rest of the chapter using
them to build other components in our image feed app.

AuthorRow

Now that we’ve completed the Avatar, let’s move on to the next component! Let’s
create the horizontal row containing our Avatar and the full name of the photo
author.

Core Components, Part 1 198

Create a new file AuthorRow.js in our components directory.

In this file, we’ll import mostly things we’ve seen already: StyleSheet, View, Text,
PropTypes, and React. We’ll also import a TouchableOpacity so that we can handle
taps on the “Comments” text to take us to the comments screen. We’ll also need to
import the Avatar component we just made, and a few of the utility functions we
copied into this project at the start of the chapter.

If you haven’t copied over the utils directory from our sample code, you
should do so now.

Core Components, Part 1 199

image-feed/1/components/AuthorRow.js

import {

StyleSheet,

Text,

TouchableOpacity,

View,

} from 'react-native';

import PropTypes from 'prop-types';

import React from 'react';

import Avatar from './Avatar';

import getAvatarColor from '../utils/getAvatarColor';

import getInitials from '../utils/getInitials';

Now let’s figure out the propTypes for the component. We’ll want to configure the
full name we display next to the Avatar and the text we use for the “Comments” link
on the right side. We’ll also want to propagate press events when the user taps the
link.

image-feed/1/components/AuthorRow.js

// ...

export default function AuthorRow({

fullname,

linkText,

onPressLinkText

}) {

}

AuthorRow.propTypes = {

fullname: PropTypes.string.isRequired,

linkText: PropTypes.string.isRequired,

onPressLinkText: PropTypes.func.isRequired,

};

Core Components, Part 1 200

// ...

Thinking about the layout of the component, we’ll want to have a View with
flexDirection: 'row'.Within this we’ll render an Avatar, a Text, and a TouchableOpacity.

Let’s start with the styles for the View and Text. Add this to the bottom of the file:

image-feed/1/components/AuthorRow.js

// ...

const styles = StyleSheet.create({

container: {

height: 50,

flexDirection: 'row',

alignItems: 'center',

paddingHorizontal: 10,

},

text: {

flex: 1,

marginHorizontal: 6,

},

});

We use flex: 1 so that Text expands to fill any remaining space in the View. This
will push the TouchableOpacity to the right side.

Now we can fill out the component function:

Core Components, Part 1 201

image-feed/1/components/AuthorRow.js

// ...

export default function AuthorRow({

fullname,

linkText,

onPressLinkText

}) {

return (

<View style={styles.container}>

<Avatar

size={35}

initials={getInitials(fullname)}

backgroundColor={getAvatarColor(fullname)}

/>

<Text style={styles.text} numberOfLines={1}>

{fullname}

</Text>

{/* ... */}

</View>

);

}

// ...

We’ll use numberOfLines={1} so that the Text is truncated when it reaches the end
of the line, rather than wrapping around to multiple lines.

Now let’s render a TouchableOpacity to add the “Comments” link text and handle
taps.

TouchableOpacity

The TouchableOpacity component is similar to View, but lets us easily respond to
tap gestures in a performant way. The TouchableOpacity component fades out when

Core Components, Part 1 202

pressed, and fades back in when released. The opacity animation happens on the
native side (it doesn’t trigger a re-render), so the animation is extremely smooth and
the interaction is low latency. The opacity value when pressed can be configured
with the activeOpacity prop by providing a number from 0 to 1.

If you don’t like the opacity animation, you can instead use a TouchableHighlight

for a background color changing animation.

One minor inconvenience with both TouchableOpacity and TouchableHighlight:
these components can only have a single child element, so if we want multiple
children, we will need to wrap them in a View.

Adding TouchableOpacity to AuthorRow

Let’s render a TouchableOpacity for “Comments” to the right of the Text in
our AuthorRow. We’ll use the onPress prop of the TouchableOpacity to call our
onPressLinkText prop.

image-feed/1/components/AuthorRow.js

export default function AuthorRow({

fullname,

linkText,

onPressLinkText,

}) {

return (

<View style={styles.container}>

<Avatar

size={35}

initials={getInitials(fullname)}

backgroundColor={getAvatarColor(fullname)}

/>

<Text style={styles.text} numberOfLines={1}>

{fullname}

</Text>

{!!linkText && (

<TouchableOpacity onPress={onPressLinkText}>

<Text numberOfLines={1}>{linkText}</Text>

Core Components, Part 1 203

</TouchableOpacity>

)}

</View>

);

}

We use !!linkText to conditionally render the <TouchableOpacity> element. The
double negation with !! lets us make sure we’re dealing with a boolean value.

Since linkText is a string, the && expression would evaluate to a string
type when linkText is the empty string '' – in React Native (unlike on
the web), we’re not allowed to render string values outside of Text (even
empty strings).

Try it out

Let’s update App.js to render our AuthorRow component in order to test it:

image-feed/1/App.js

// ...

import AuthorRow from './components/AuthorRow';

export default class App extends React.Component {

render() {

return (

<View style={styles.container}>

<AuthorRow

fullname={'First Last'}

linkText={'Comments'}

onPressLinkText={() => {

console.log('Pressed link!');

}}

/>

Core Components, Part 1 204

</View>

);

}

}

// ...

Here’s what our AuthorRow should look like:

You can also try pressing the “Comments” text. The text’s opacity should animate
and you’ll see “Pressed link!” logged to the terminal.

In our AuthorRow, as in earlier chapters, we used the style attributes paddingHorizontal
and marginHorizontal to adjust the spacing between the different components we
rendered. Let’s dive into how these attributes work.

Core Components, Part 1 205

Padding, margin, borders, and the box model

The React Native layout engine uses what’s known as the box model for customizing
spacing. You might be familiar with the box model if you’ve developed for the web.
There are three main style attributes we can use:

• margin: This is the amount of space between a component and its siblings or
the edge of its parent’s content area.

• border: This is the border drawn around the component, which can vary in
width, style (e.g. a dashed line), and color.

• padding: this is the spacingwithin a component before its children components.

Each of these style attributes can have a different size on each side of the component:
top, right, bottom, and left. For example, if we wanted to set a top margin of 10
pixels, we would write marginTop: 10 in the styles object. For convenience, we can
set all four sides to have the same size with margin: 10. We can also set vertical and
horizontal margin with marginVertical: 10 and marginHorizontal: 10. The more
specific style attributes will override the more generic ones – if we write margin:

10, marginTop: 20, the top will have a margin of 20, while the rest of the sides will
have a margin of 10. All of the same rules apply to padding and border too (except
that for border, the attribute is called borderWidth instead of border).

Here is an illustration of the box model:

Core Components, Part 1 206

In this example, there’s a margin of 20, a borderWidth of 10, padding of 20, and a
content area of 130 wide by 80 tall. The borderWidth and margin on the bottom side
are different than the rest: the border on the bottom is 20, and the margin on the
bottom is 30. Here’s how we might write the style for this:

{

margin: 20,

borderWidth: 10,

padding: 20,

borderBottomWidth: 20

marginBottom: 30

};

When we use a fixed width or height, this includes the content area, the padding
area, and the border width. Margin is not counted in the width or height, since it is
space outside of the component’s edges. The width in this example is 10 + 20 + 130

+ 20 + 10 = 190, and the height is 10 + 20 + 80 + 20 + 20 = 150.

We’ll continue using these spacing style attributes and the box model as we build the
rest of the components in our app.

Core Components, Part 1 207

Card

Next up, we’ll make the card containing AuthorRow and the Image component.

Since rendering Image components will be an important part of our app, let’s look at
how images work in more detail.

Image

We use the Image component to render images on the screen. There are two ways to
include images in an app: we can bundle an image asset with our code (which will
then get stored on the device), or we can download an image from a URI.

Bundling image assets

To bundle an image asset, we can require the image by name from our project
directory just like any other file. The React Native packager will give us a reference

Core Components, Part 1 208

to this image (a number) that represents the image’s metadata. The packager will
automatically bundle images for multiple pixel densities if we name them with the
@ suffix: .png for standard resolution, @2x.png for 2x resolution, and @3x.png for 3x
resolution. We can pass an image reference to the source prop of an Image to render
it.

For example, if we had a file called foo.png in the root directory of our app, we could
use:

<Image source={require('./foo.png')} />

We won’t bundle any images in this app, however, since the images we want to
display come from the web. Instead, we’ll load remote images assets.

Remote image assets

To display an image from a URI, we must pass an object to the source prop of the
Image component. The object should contain a string value uri, and may optionally
contain number values for width and height (representing the image’s intrinsic
dimensions, pre-calculated). The Image component will automatically download the
data from the URI and display it once loaded.

<Image source={{ uri: 'https://unsplash.it/600/600' }} />

Since large images may take a while to download, we’ll often show a loading
indicator of some sort before the download has finished. We can pass a callback
function to the onLoad prop of Image to determine when the image has loaded. We’ll
explore this shortly.

In this chapter, we’ll use the open API, https://unsplash.it, to fetch images for
our image feed. This API is very useful for testing apps that need placeholder
images. We’ll use two API endpoints:

• https://unsplash.it/${width}/${height}: This endpoint gives us a ran-
dom image. We can use the query parameter image and pass the id of an
image to fetch a specific image, e.g. ?image=10. We can specify the dimensions

Core Components, Part 1 209

of the image by putting the desired width and height in the URL.We’ll choose
an arbitrary size, 600 x 600, for this app.

• https://unsplash.it/list: This endpoint gives us a list of image metadata
objects. The metadata object for each image contains an idwhich we can use
for the image query parameter of the previous endpoint.

We’ll be using two utility functions in utils/api.js: getImageFromId(id) and
fetchImages(). These functions correspond to the two unsplash.it APIs, respec-
tively.

Common image styles

We can use the resizeMode style (or prop – both work) to determine how the image
is cropped in the case where the image data’s intrinsic dimensions are different than
the dimensions of the Image component.

The options for resizeMode are:

• cover: The image scales uniformly to fill the Image component. The image will
be cropped by the bounding box of the component if they have different aspect
ratios.

• contain: The image scales uniformly to fit within the component. The compo-
nent’s background color will show if they have different aspect ratios.

• stretch: The image stretches to fill the component.
• repeat: The image repeats itself at its intrinsic dimensions to fill the component
(iOS-only).

• center: The image maintains its intrinsic dimensions, and is centered within
the component.

We can use the aspectRatio style to render the image at a specific aspect ratio,
regardless of its intrinsic dimensions. We provide a number value which represents
the ratio of width to height. For example, if we set aspectRatio: 2, this means the
ratio of width to height is 2 to 1 – the image will render twice as wide as it is tall.

Core Components, Part 1 210

While most commonly used with images, the aspectRatio style can be used on any
component, such as View or Text.

If you’re coming from the web, you’ll likely find this style surprising since
there’s no equivalent style in CSS. The React Native layout engine, Yoga,
added this style to its flexbox implementation.

Yoga
React Native uses the Yoga layout engine (also from Facebook). This is a cross-
platform implementation of the flexbox algorithm. It matches the algorithm used
by web browsers pretty closely, but with two important differences:

• The default values are different
• Yoga adds a couple new features that don’t exist in the browser (like
aspectRatio)

If you want to read more about the algorithm and all of the styles available to use,
check out the Yoga docs.

https://facebook.github.io/yoga/

Adding Image to Card

Let’s set up the outline for our Card component and render an Image.

Create a new file Card.js in the components directory. Add the following to this file:

https://facebook.github.io/yoga/
https://facebook.github.io/yoga/

Core Components, Part 1 211

image-feed/1/components/Card.js

import { Image, StyleSheet, View } from 'react-native';

import PropTypes from 'prop-types';

import React from 'react';

import AuthorRow from './AuthorRow';

export default class Card extends React.Component {

static propTypes = {

fullname: PropTypes.string.isRequired,

image: Image.propTypes.source.isRequired,

linkText: PropTypes.string,

onPressLinkText: PropTypes.func,

};

static defaultProps = {

linkText: '',

onPressLinkText: () => {},

};

// ...

render() {

// ...

}

}

Most of the props we use here should look familiar: fullname, linkText, and
onPressLinkText will all get passed into the AuthorRow we created earlier. The
interesting one is image – we use Image.propTypes.source as the type, so that we
can pass this directly into the source prop of the Image we’ll render.

Let’s fill out the component function:

Core Components, Part 1 212

image-feed/1/components/Card.js

// ...

render() {

const { fullname, image, linkText, onPressLinkText } = this.props;

return (

<View>

<AuthorRow

fullname={fullname}

linkText={linkText}

onPressLinkText={onPressLinkText}

/>

<Image style={styles.image} source={image} />

</View>

);

}

// ...

const styles = StyleSheet.create({

image: {

aspectRatio: 1,

backgroundColor: 'rgba(0,0,0,0.02)',

},

});

We’ll render a View (with the default style flexDirection: 'column') in order to
vertically stack our AuthorRow and Image component. Since the View style defaults
to alignItems: 'stretch', the image stretches horizontally to fill the screen. We
use aspectRatio: 1 to make the height of the Image match its full-screen width,
rendering as a perfect square. We put a backgroundColor on the Image which will
show before the image loads, or behind the image if the image is transparent.

Core Components, Part 1 213

Try it out

To test this, let’s render our new Card from App. Update the component in App.js to
the following:

image-feed/1/App.js

// ...

import Card from './components/Card';

export default class App extends React.Component {

render() {

return (

<View style={styles.container}>

<Card

fullname={'First Last'}

linkText={'Comments'}

onPressLinkText={() => {

console.log('Pressed link!');

}}

image={{ uri: 'https://unsplash.it/600/600' }}

/>

</View>

);

}

}

// ...

When you save App.js, you should see our AuthorRow from earlier plus a random
image on your device:

Core Components, Part 1 214

Loading status

You might notice that we see the background color behind our image as we wait for
it to load. Let’s add a loading indicator before the image has fully loaded, to provide
more feedback to the user.

We can pass a callback to the onLoad prop of Image in order to monitor the loading
status. Let’s keep track of the Image loading status in the state of our Card component.
Update Card.js to include the following:

Core Components, Part 1 215

image-feed/1/components/Card.js

export default class Card extends React.Component {

// ...

state = {

loading: true,

};

handleLoad = () => {

this.setState({ loading: false });

};

render() {

const { fullname, image, linkText, onPressLinkText } = this.props;

const { loading } = this.state;

return (

<View>

<AuthorRow

fullname={fullname}

linkText={linkText}

onPressLinkText={onPressLinkText}

/>

<Image

style={styles.image}

source={image}

onLoad={this.handleLoad}

/>

</View>

);

}

}

Now we’re tracking when the image has fully loaded with state.loaded. Next we’ll
render the loading indicator when state.loaded is true.

Core Components, Part 1 216

ActivityIndicator

We can render a loading indicator using the ActivityIndicator component.

This component accepts all the same props as View, plus a few more:

• animating: A bool indicating whether to show or hide the indicator (defaults to
true).

• color: The color of the spinner (defaults to gray).
• size: One of 'small' or 'large' (defaults to small).

We want to position the ActivityIndicator in the center of the image. Unlike
View, the Image component doesn’t accept a children prop, so we can’t put the
ActivityIndicator inside it. We could use the ImageBackground component like we
did in the “Getting Started” chapter, but let’s instead look at a more generic way we
can stack components: position.

Core Components, Part 1 217

Position

So far we’ve mostly used the style attributes flexDirection, justifyContent, and
alignItems in our layouts. React Native gives us another powerful style attribute we
can use to adjust layout: position. Position can be either 'relative' or 'absolute'.

relative

When set to 'relative' (which is the default), we’re able to tweak the position of a
component after it has already been laid out according to its flex, width, height, etc.
We can use a combination of top, right, bottom, and left. For example, if wewant to
move a component down on the screen by 20 pixels, we could say top: 20 to indicate
that its top should be 20 pixels greater than it is currently. Unlike specifying padding,
margin, or borderWidth, the style attributes like top don’t affect other elements in
the layout. In other words, adding top: 20 will change the position of the element
it was applied to, but not the position of the element’s siblings or parent (even if this
causes them to overlap).

absolute

When set to 'absolute', the layout of the parent and the component’s flex style are
completely ignored. Instead we use top, right, bottom, and left to specify exactly
how the component should be placed within its parent. For example, if we want the
component to be 10 pixels from the bottom and 20 pixels from the right side of its
parent, we can say bottom: 20, right: 10. As always, we need to make sure the
component has dimensions greater than 0. Since flex is ignored, we may need to
specify a fixed width and height. We can also ensure the component has dimensions
greater than 0 by specifying both top and bottom, or both left and right. For example,
if we say left: 10, right: 10, the componentwill stretch horizontally to fill the space
from 10 pixels from the left of its parent to 10 pixels from the right. Components
positioned with position: 'absolute' don’t affect the layout of their siblings or
parent components.

It’s common to use position: 'absolute' to make elements overlap. Suppose we
want two sibling elements to overlap, filling their parent completely. We can add a
style like this to both siblings:

Core Components, Part 1 218

const absoluteFillStyle = {

position: 'absolute',

top: 0,

right: 0,

bottom: 0,

left: 0,

};

This style will cause an element to fill its parent completely, since its top will
match its parent’s top, its right side will match its parent’s right side, and so on.
This technique is so common that there’s a predefined style to do the same thing:
StyleSheet.absoluteFill. This value can be passed directly to the style prop of
an element. Alternately, you can use ...StyleSheet.absoluteFillObject, copying
each of these properties into another style – this is useful if you want to override one
or two properties but keep the rest.

This overlapping behavior is exactlywhatwewant for positioning our ActivityIndicator
in the center of our Image.

Adding ActivityIndicator to Card

We’ll use StyleSheet.absoluteFill to ensure that our ActivityIndicator matches
the dimensions of our Image. To do this, we’ll need to create a common ancestor View
for both.

First, in Card.js, make sure to import ActivityIndicator:

image-feed/1/components/Card.js

ActivityIndicator,

Then, update the render method of Card to the following:

Core Components, Part 1 219

image-feed/1/components/Card.js

render() {

const { fullname, image, linkText, onPressLinkText } = this.props;

const { loading } = this.state;

return (

<View>

<AuthorRow

fullname={fullname}

linkText={linkText}

onPressLinkText={onPressLinkText}

/>

<View style={styles.image}>

{loading && (

<ActivityIndicator

style={StyleSheet.absoluteFill}

size={'large'}

/>

)}

<Image

style={StyleSheet.absoluteFill}

source={image}

onLoad={this.handleLoad}

/>

</View>

</View>

);

}

If you save Card.js and look at your device, you should see the ActivityIndicator
positioned in the center of the Image before it loads.

It can be a little confusing to see how this works at first, so let’s walk through it.
We moved the styles.image style to the inner View that’s the parent of the Image.
This inner View is inside a parent View with alignItems: 'stretch' (the default)
and it has aspectRatio: 1, so we know the inner View will have the same width as

Core Components, Part 1 220

its parent (in this case, the width of the screen) and a height equal to its width. The
Image and ActivityIndicator will have the same top, right, bottom, and left of
the inner View – in other words, they’ll will match the dimensions of the View.

The order we render components in our code matters here: within the inner View,
we render the ActivityIndicator before the Image. The component rendered last
in the code will render on top of its siblings visually. This normally isn’t something
we have to think about, since components don’t stack on top of one another. With
position however, sibling components may overlap, and the order we render them
determines their order on screen. In this case, our image Image renders on top of our
ActivityIndicator. The onLoad eventmay get called after the image has been drawn,
so this way the Image covers up the ActivityIndicator even if both are rendered at
the same time.

If you’re coming from the web, you may be wondering about the zIndex
style attribute. React Native has a attribute zIndex, but it behaves a little
differently and can have somewhat unpredictable effects. It’s generally
safer to render components in the correct order, if possible.

There are many other ways to achieve the same layout. Another approach would
be to set the Image style to flex: 1 to fill the View completely.

<View style={styles.image}>

{loading && (

<ActivityIndicator

style={StyleSheet.absoluteFill}

size={'large'}

/>

)}

<Image

style={{ flex: 1 }}

source={image}

onLoad={this.handleLoad}

/>

</View>

Core Components, Part 1 221

We could also leave styles.image on the Image, and rely on the fact that its parent
View will resize along the vertical axis to contain its children:

<View>

{loading && (

<ActivityIndicator

style={StyleSheet.absoluteFill}

size={'large'}

/>

)}

<Image

style={styles.image}

source={image}

onLoad={this.handleLoad}

/>

</View>

All of these approaches are reasonable, so deciding which to use mostly comes
down to preference. We chose our approach for this chapter because it’s easier to
understand at first glance: both children of the View have StyleSheet.absoluteFill,
so it’s clear that they will overlap completely just by reading the code.

Now that we have our Card component, we can render a list of these to create the
main feed.

CardList

The CardList component will render the infinitely scrolling list of authors and
images.

Core Components, Part 1 222

We’ll render this list of cards using the FlatList component.

FlatList

FlatList components are used for rendering large quantities of scrollable content.
Instead of rendering a children prop, the FlatList renders each item in an input data
array using the renderItem prop. The renderItem prop is a function which takes an
item from the data array and maps it to a React Element. Each item in data should
be an object with a unique id, so that React can determine when items have been
rearranged.

The FlatList is generally performant: it only renders the content on screen (clipping
offscreen content), and only updates rows that have changed. The FlatList is built
using amore generic component, the ScrollView, whichwe’ll use later in the chapter.

Core Components, Part 1 223

Adding FlatList to CardList

Let’s create a new file, CardList.js, in our components directory. We’ll import the
FlatList, our Card, a utility for building an image url from an id, and a few other
things at the top of the file:

image-feed/1/components/CardList.js

import { FlatList } from 'react-native';

import PropTypes from 'prop-types';

import React from 'react';

import { getImageFromId } from '../utils/api';

import Card from './Card';

Ultimately we’ll use https://unsplash.it to fetch the data for our feed, but for now
let’s pretend our data looks like:

[

{ id: 0, author: "Bob Ross" },

{ id: 1, author: "Chuck Norris" }

];

It’s important that the id field is unique, since we’ll use it to determine the identity
of each card in the feed. If it weren’t unique, we would start to see quirky behavior
where some items don’t render. Fortunately the API we’ll call later has unique id

values (as most APIs should!).

We’ll need to provide a function to the FlatList which maps each element in our
data array to its unique key. Let’s define a utility function to do this at the top of the
file, which we’ll then pass to the FlatList as the keyExtractor prop. Our function,
keyExtractor, will take an item from our array and return the id for that item as a
string. Define this function below the imports:

Core Components, Part 1 224

image-feed/1/components/CardList.js

const keyExtractor = ({ id }) => id.toString();

We’ll use this function in a moment when we render the FlatList.

Moving on to the propTypes, we’ll want to ensure our input data matches the
format we defined above. We can use a combination of PropTypes.arrayOf and
PropTypes.shape. Let’s set up our component skeleton as follows:

image-feed/1/components/CardList.js

// ...

export default class CardList extends React.Component {

static propTypes = {

items: PropTypes.arrayOf(

PropTypes.shape({

id: PropTypes.number.isRequired,

author: PropTypes.string.isRequired,

}),

).isRequired,

};

render() {

// ...

}

}

We’ll use a class component instead of a functional component, since we’ll add a few
methods which need to access props when we add commenting later.

So far we’ve seen how we can validate primitive values with PropTypes.bool,
PropTypes.string, etc. We can use PropTypes.shape() to validate an object,
passing the keys of the values we want to validate. We can use PropTypes.array()
to validate an array, passing the type of the element.

If we were planning to use this items data structure in multiple places, we might

Core Components, Part 1 225

want to define its type in a separate file, such as ItemsPropType.js. That way
we can define it once and import it from multiple files, rather than defining it
in multiple places. React Native exports a few built-in types this way, such as
ViewPropTypes.

Now let’s render the FlatList:

image-feed/1/components/CardList.js

renderItem = ({ item: { id, author } }) => (

<Card

fullname={author}

image={{

uri: getImageFromId(id),

}}

/>

);

render() {

const { items } = this.props;

return (

<FlatList

data={items}

renderItem={this.renderItem}

keyExtractor={keyExtractor}

/>

);

}

Destructuring assignments, revisited
In the previous chapter, we covered destructuring assignments. Destructuring
assignments can also be nested, as in the example above:

Core Components, Part 1 226

renderItem = ({ item: { id, author } }) => {}

This is equivalent to:

renderItem = (obj) => {

const id = obj.item.id;

const author = obj.item.author;

}

We provide the prop keyExtractor to instruct the FlatList how to uniquely identify
items – this helps the FlatList determine when it needs to re-render items as they
go in and out of the visible portion of the screen.

Each time the FlatList decides to render a new item, it will call the renderItem

function we provide it with, with an object as a parameter. The object contains some
rendering metadata, along with the item from the array we passed as the data prop.

Within renderItem, we can then return a Card component based on the item. We can
use the item’s id to construct a URI for an image, leveraging our getImageFromId()
utility function.

Save CardList.js and let’s test it out.

Try it out

Update App.js to render the CardList using the hardcoded data we mentioned
earlier:

Core Components, Part 1 227

image-feed/1/App.js

// ...

import CardList from './components/CardList';

const items = [

{ id: 0, author: 'Bob Ross' },

{ id: 1, author: 'Chuck Norris' },

];

export default class App extends React.Component {

render() {

return (

<View style={styles.container}>

<CardList items={items} />

</View>

);

}

}

// ...

Save App.js and you should see this:

Core Components, Part 1 228

Now that we’ve finished our last custom UI component for the image feed, we can
use it to create our Feed screen.

Adding a screen

Our app will have two screens:

• Feed: The image feed
• Comments: The list of comments for a specific image

In React Native, screens are components just like any other. However, it’s useful
to think about screens slightly differently. Screens are components that fill the
entire device screen. They often handle non-visual concerns, like fetching data and
handling navigation to other screens.

It’s common to keep all of the screen components in an app together in a screens

directory. For more advanced apps, we might create directories within screens to

Core Components, Part 1 229

categorize them more specifically. Since this app is pretty simple, let’s use a flat
screens directory.

Create a new directory called screenswithin our top level image-feed directory, and
create a new file within screens called Feed.js.

The Feed screen

This screen will fetch live data from https://unsplash.it and pass the data into our
CardList. The data we fetch will follow the same format as the hardcoded list we’re
using currently.

Now that we’re fetching remote data asynchronously, we need to consider loading
and error states. This screen will show a simple loading indicator and error status.

Add the following imports to Feed.js:

image-feed/1/screens/Feed.js

import {

ActivityIndicator,

Text,

ViewPropTypes,

SafeAreaView,

} from 'react-native';

import PropTypes from 'prop-types';

import React from 'react';

import { fetchImages } from '../utils/api';

import CardList from '../components/CardList';

Often screens are configured with props just like other components. In this case, we’ll
allow a style prop, which we’ll use for the top level View within this screen. This
allows a lot of flexibility for our screen to be styled however we need. The type of
this prop will be the same as the style prop of View – React Native provides this
validator as a separate import, ViewPropTypes.

Core Components, Part 1 230

You might be tempted to use PropTypes.object to represent a style,
but this doesn’t work very well. Styles created with StyleSheet.create

are represented as numbers, so this will cause a warning. Also,
ViewPropTypes.style provides in-depth type-checking of each key and
value, which is very valuable.

image-feed/1/screens/Feed.js

// ...

export default class Feed extends React.Component {

static propTypes = {

style: ViewPropTypes.style,

};

static defaultProps = {

style: null,

};

// ...

}

// ...

It’s common to allow a style prop for creating extremely flexible custom compo-
nents. We could technically use this style prop however we want, such as styling a
deeply nested component – however, when naming a prop the same as a built-in View
prop, we’ll generally try to keep the behavior similar. Following built-in component
conventionsmakes it easier for other developers to understand how to use our custom
components without reading the source code.

We’ll keep track of three things in the state of our Feed: loading, error, and items.

Core Components, Part 1 231

image-feed/1/screens/Feed.js

state = {

loading: true,

error: false,

items: [],

};

We can use these to decide what to render. We’ll fetch data in componentDidMount,
updating component state when we get a response.

image-feed/1/screens/Feed.js

async componentDidMount() {

try {

const items = await fetchImages();

this.setState({

loading: false,

items,

});

} catch (e) {

this.setState({

loading: false,

error: true,

});

}

}

We made componentDidMount an async function so that we can use the await syntax
within it. This means the function will return a promise. React doesn’t use the return
value of componentDidMount for anything, so this is safe.

Now, let’s update our render method to make use of this new state:

Core Components, Part 1 232

image-feed/1/screens/Feed.js

render() {

const { style } = this.props;

const { loading, error, items } = this.state;

if (loading) {

return <ActivityIndicator size="large" />;

}

if (error) {

return <Text>Error...</Text>;

}

return (

<SafeAreaView style={style}>

<CardList items={items} />

</SafeAreaView>

);

}

We’re ready to render our Feed screen from App!

Adding Feed to App

Let’s update App.js to render our new screen. First we’ll need to update the imports
at the top of the file:

Core Components, Part 1 233

image-feed/1/App.js

import { Platform, StyleSheet, View } from 'react-native';

import Constants from 'expo-constants';

import React from 'react';

import Feed from './screens/Feed';

export default class App extends React.Component {

render() {

return (

<View style={styles.container}>

<Feed style={styles.feed} />

</View>

Then we can render our Feed within a wrapper View:

image-feed/1/App.js

export default class App extends React.Component {

render() {

return (

<View style={styles.container}>

<Feed style={styles.feed} />

</View>

);

}

}

Since our Feed uses a SafeAreaView at the top level, we’ll also need to update our
styles from before. We only want to add a marginTop on Android, or on iOS versions
less than 11, since the top margin is added automatically by the SafeAreaView on iOS
11+ now.

We can use Platform.Version to detect the native operating system version. On iOS,
this is a string like '10.3', while on Android it’s a number.

Core Components, Part 1 234

image-feed/1/App.js

const platformVersion =

Platform.OS === 'ios'

? parseInt(Platform.Version, 10)

: Platform.Version;

const styles = StyleSheet.create({

container: {

flex: 1,

backgroundColor: '#fff',

},

feed: {

flex: 1,

marginTop:

Platform.OS === 'android' || platformVersion < 11

? Constants.statusBarHeight

: 0,

},

});

And with that, we’re finished with the feed! Here’s the final result with live data:

Core Components, Part 1 235

List Performance
If you’re running a version of React Native greater than 0.55, you may see the
following warning after scrolling through a hundred or so images:

1 VirtualizedList: You have a large list that is slow to update - make su\

2 re your

3 renderItem function renders components that follow React performance be\

4 st practices

5 like PureComponent, shouldComponentUpdate, etc.

React Native is letting us know that our list is taking a long time to render once it
gets to a certain length. We can address this by reducing the amount of cards we
re-render.

The FlatList re-renders our cards while we scroll. Most of the time, however, a
card’s data doesn’t change, so we don’t need to update the component after the

Core Components, Part 1 236

initial render – the only time the data might change is if the number of comments
to display changes. We can add a shouldComponentUpdate method to Card.js to
reduce re-renders and thus improve the performance of our FlatList. We could
add the following shouldComponentUpdate method:

shouldComponentUpdate(nextProps) {

return this.props.linkText !== nextProps.linkText

}

Then our cards would only re-render if absolutely necessary. You may still get the
same warning at a certain point, but it should take several times more scrolling
than before.

Most of the time using shouldComponentUpdate is a premature optimization. Even
when it comes to large lists like this, often the performance will be good enough
in the production build without any other optimizations. However, if you get a
warning, it’s an optimization worth considering.

What we’ve built so far

Let’s recap what we’ve done so far. We used the components View, Text, Image, and
FlatList to build a cross-platform, infinitely scrolling list of images and authors. We
created 4 components, each one building on top of the previous: Avatar, AuthorRow,
Card, and CardList. We tested each component as we built it, by rendering from our
top-level component, App. We used a variety of techniques for layout:

• Setting the width and height explicitly
• Using flex to stretch elements
• Using flexDirection, justifyContent, and alignItems for children layout
• Using padding and margin to define spacing between elements
• Using position: 'absolute' to stack elements on top of one another
• Creating optimized styles with StyleSheet.create

These are the fundamental building blocks of any React Native UI. We’ll continue to
use these throughout the rest of the book, as we add more components and APIs to
our repertoire.

Core Components, Part 2
Picking up where we left off

We successfully built an awesome infinitely-scrolling image feed. Next, we’re going
to add a new screen to the same app for commenting on images.

This is a code checkpoint. If you haven’t been coding along with us but
would like to start now, we’ve included a snapshot of our current progress
in the sample code for this book.

If you haven’t created a project yet, you’ll need to do so with:

$ expo init image-feed --template blank@sdk-36 --yarn

Then, copy the contents of the directory image-feed/1 from the sample
code into your new image-feed project directory.

Comments

Here’s what the comments screen will look like:

Core Components, Part 2 238

To build this portion of the app, we’ll learn how to use the TextInput, ScrollView,
and Modal components. We’ll also cover a few other topics like AsyncStorage. We’ll
make a few assumptions so we can focus on built-in components:

• we won’t use a navigation library even though we have multiple screens (more
on navigation in later chapters)

• we only want to store comments locally on the device, rather than remotely via
an API

• comments can be saved as simple strings (no id, author, or other metadata)
• the comment input field is at the top of the screen, to avoid complexities around
keyboard and scrolling (which we’ll cover in the next chapter)

• there are few enough comments that a ScrollView will be performant enough
(rather than using a FlatList)

Breaking down the comments screen

The first thing we’ll want to do is break the screen down into components. Here’s
one way we can break it down:

Core Components, Part 2 239

• NavigationBar - A simple navigation bar for the top of the screen with a title
and a “close” button

• CommentInput - The input field for adding new comments
• CommentList - The scrollable list of comments

The App component will be responsible for handling comment data in our app, since
both the Feed screen and Comments screen need to render this data. We’ll render the
Comments screen component from App, passing the comment data for the selected
card as a prop. We’ll render the built-in Modal component to open and close this new
screen based on the state of App.

We’ll continue building bottom-up, starting with the CommentInput component,
working our way up to the screen component. We won’t test every component

Core Components, Part 2 240

individually by rendering it from App like we did in the first half of the chapter,
but you’re welcome to continue to do this if you liked having a quicker feedback
loop while developing.

CommentInput

First, let’s create the input field for new comments.

TextInput

As we saw in the “Getting Started” chapter, we can use a TextInput component to
create an editable text field for the user to type in.

When working with TextInput, we’ll generally use the following props to capture
user input:

• value - The current text in the input field.

Core Components, Part 2 241

• onChangeText - A function called each time the text changes. The new value is
the first argument.

• onSubmitEditing - A function called when the user presses the return/next key
to submit/move to the next field.

It’s common to store the current text in the state of the component that renders
the TextInput. Each time the function we pass to onChangeText is called, we call
setState to update the current text. When the user presses return, the function we
passed to onSubmitEditing is called – we can then perform some action with the
current text, and use setState to reset the current text to the empty string.

Common TextInput props and styles

When working with TextInput, we can use most of the same styles as Text (which
includes the styles for View). A few styles don’t work quite as well as they do on
Text though: borders tend not to render correctly, and padding and line height can
conflict in unusual ways. If you’re having trouble styling a TextInput, you may want
to wrap the TextInput in a View and style the View instead.

A few other common props:

• autoCapitalize - For capitalizing characters as they’re typed. One of 'none',
'sentences', 'words', 'characters'.

• autoCorrect - Enable/disable auto-correct.
• editable - Enable/disable the text field.
• keyboardType - The type of keyboard to display. Cross-platform values are
'default', 'numeric', 'email-address', 'phone-pad'.

• multiline - Allow multiple lines of input text.
• placeholder - The text to show when the text field is empty
• placeholderTextColor - The color of the placeholder text
• returnKeyType - The text of the return key on the keyboard. Cross-platform
values are 'done', 'go', 'next', 'search', 'send'.

Many more props are available in the docs for TextInput⁵⁵

⁵⁵https://facebook.github.io/react-native/docs/textinput.html

https://facebook.github.io/react-native/docs/textinput.html
https://facebook.github.io/react-native/docs/textinput.html

Core Components, Part 2 242

Adding TextInput to CommentList

While we could render a TextInput component directly from our Comments screen,
it’s often better to create a wrapper component that encapsulates state, styles,
edge cases, etc, and has a smaller API. That’s what we’ll do in our CommentInput
component. The result will be very similar to our TextInput wrapper components
from previous chapters.

Create a new file, CommentInput.js, in the components directory. We’ll import the
usual React, PropTypes, etc, along with the TextInput component:

image-feed/components/CommentInput.js

import { StyleSheet, TextInput, View } from 'react-native';

import PropTypes from 'prop-types';

import React from 'react';

We want this component to have two props:

• onSubmit - we’ll call this with the comment text when the user presses the
“return” key.

• placeholder - a passthrough to the placeholder prop of the TextInput.

Add the following to CommentInput.js:

image-feed/components/CommentInput.js

// ...

export default class CommentInput extends React.Component {

static propTypes = {

onSubmit: PropTypes.func.isRequired,

placeholder: PropTypes.string,

};

static defaultProps = {

placeholder: '',

Core Components, Part 2 243

};

// ...

}

// ...

We’ll add a text value to state and methods for updating this value when the value
of the TextInput changes:

image-feed/components/CommentInput.js

state = {

text: '',

};

handleChangeText = text => {

this.setState({ text });

};

handleSubmitEditing = () => {

const { onSubmit } = this.props;

const { text } = this.state;

if (!text) return;

onSubmit(text);

this.setState({ text: '' });

};

We don’t want to allow empty comments, so when handleSubmitEditing is called,
we’ll return immediately if state.text is empty.

Last, we’ll render the TextInput. We want to add a border on the bottom, but adding
borders to TextInput can be a bit unreliable as sometimes they don’t show up. So
we’ll wrap the TextInput in a View and style the View instead:

Core Components, Part 2 244

image-feed/components/CommentInput.js

render() {

const { placeholder } = this.props;

const { text } = this.state;

return (

<View style={styles.container}>

<TextInput

style={styles.input}

value={text}

placeholder={placeholder}

underlineColorAndroid="transparent"

onChangeText={this.handleChangeText}

onSubmitEditing={this.handleSubmitEditing}

/>

</View>

);

}

image-feed/components/CommentInput.js

const styles = StyleSheet.create({

container: {

borderBottomWidth: StyleSheet.hairlineWidth,

borderBottomColor: 'rgba(0,0,0,0.1)',

paddingHorizontal: 20,

height: 60,

},

input: {

flex: 1,

},

});

This is where we pass our state management methods handleChangeText and
handleSubmitEditing to the TextInput, to keep track of changes to the value.

Core Components, Part 2 245

We can use StyleSheet.hairlineWidth as the border width to render the thinnest
possible line on any given device. On a retina device for example, this would be less
than 1.

If you want to see what this component looks like to check your work,
consider rendering it from within App for testing.

CommentList

Next, we’ll render a list of comments for each image:

We’ll render these comments in a ScrollView. In reality, we’d probably want to use
a FlatList for performance, but let’s use a ScrollView for practice.

Core Components, Part 2 246

ScrollView

The ScrollView is simpler than the FlatList: it will render all of its children in
a vertically or horizontally scrollable list, without the additional complexity of the
keyExtractor or renderItem props.

The ScrollView is well suited for scrolling through small quantities of content (fewer
than 20 items or so). Content within a ScrollView is rendered even when it isn’t
visible on the screen. For large quantities of items, or cases where many children of
the ScrollView are offscreen, you will likely want to use a FlatList component for
better performance.

ScrollView dimensions and layout

You can think of a ScrollView as two separate views, one inside the other. The outer
view has a bounded size, while the inner view can exceed the size of the outer view. If
the inner view exceeds the size of the outer view, only a portion of it will be visible.
When we pass children elements to the ScrollView, they are rendered inside this
inner view. We call the inner view the “content container view”, and can style it
separately from the outer view.

Debugging a ScrollView

While building an app, it’s common to render a ScrollView but see nothing on the
screen. There are two common causes for this, based on how the outer view and
the content container view work (assuming vertical scrolling):

• The content container view has flex: 0 by default, so it starts with a height
of 0 and expands to theminimum size needed to contain its children elements.
If a child has flex: 1, this child won’t be visible, since the content container
has an intrinsic height of 0. While we could set the contentContainerStyle
to flex: 1, this probably isn’t what we want, since then we’ll never have
content larger than the outer view. Instead, we should make sure the children
we pass to the ScrollView have intrinsic height values greater than 0 (either
by using an explicit height, or by containing children that have height

greater than 0).

Core Components, Part 2 247

• The outer view does not change size based on the content container view.
In addition to ensuring that the children of a ScrollView have non-zero
height, we have to make sure our ScrollView has non-zero dimensions –
a fixed width and height, flex: 1 and a parent with alignItems: stretch,
or absolute positioning.

Most likely, if the ScrollView doesn’t appear, we need to add flex: 1 to each parent
and to the ScrollView itself. To debug, you can try setting a background color on
each parent to see where flex: 1 stopped getting propagated down the component
hierarchy.

Adding ScrollView to CommentList

Let’s render a ScrollView that contains a list of comments. We’ll call this component
CommentList.

Create a file CommentList.js in the components directory.

This component will take an items array prop of comment strings, mapping these
into View and Text elements. We’ll set up the outline for this component in
CommentList.js as follows:

image-feed/components/CommentList.js

import { ScrollView, StyleSheet, Text, View } from 'react-native';

import PropTypes from 'prop-types';

import React from 'react';

export default class CommentList extends React.Component {

static propTypes = {

items: PropTypes.arrayOf(PropTypes.string).isRequired,

};

// ...

}

Core Components, Part 2 248

Unlike FlatList, we don’t need to deal with the keyExtractor and data props. We
can simply render the children of the ScrollView as we would for a View:

image-feed/components/CommentList.js

renderItem = (item, index) => (

<View key={index} style={styles.comment}>

<Text>{item}</Text>

</View>

);

render() {

const { items } = this.props;

return <ScrollView>{items.map(this.renderItem)}</ScrollView>;

}

image-feed/components/CommentList.js

const styles = StyleSheet.create({

comment: {

marginLeft: 20,

paddingVertical: 20,

paddingRight: 20,

borderBottomWidth: StyleSheet.hairlineWidth,

borderBottomColor: 'rgba(0,0,0,0.05)',

},

});

Since comments are stored as strings, we don’t have a convenient value to
use as the unique React key. Using the comment text as the key wouldn’t
work, since comments don’t have to be unique. Using the index as the
key works here, but is generally a pattern to be wary of, since it can cause
problems when rearranging items. A better solution would be to augment
our comment data with ids: we could store comments as objects, and use
the uuid library from the previous chapter to assign each comment a unique
id for use as the key.

Core Components, Part 2 249

Now that we have a scrolling list of comments, we canmove on to the navigation bar,
which will be the last component we make before assembling our comments screen.

NavigationBar

Since our comments screen is going to open in a modal, we want to render a
navigation bar with a title and close button.

In a real app, we would likely use a navigation library for this, but for simplicity, let’s
write something small of our own.

Create NavigationBar.js in the components directory and add the following outline:

Core Components, Part 2 250

image-feed/components/NavigationBar.js

import {

StyleSheet,

Text,

TouchableOpacity,

View,

} from 'react-native';

export default function NavigationBar({

title,

leftText,

onPressLeftText,

}) {

// ...

}

NavigationBar.propTypes = {

title: PropTypes.string,

leftText: PropTypes.string,

onPressLeftText: PropTypes.func,

};

NavigationBar.defaultProps = {

title: '',

leftText: '',

onPressLeftText: () => {},

};

// ...

We won’t use isRequired on our props, since this component would likely
be used without some of them, e.g. leftText and onPressLeftText, if we
were to add more screens to this app.

This component will be fairly straightforward, using only concepts we’ve covered

Core Components, Part 2 251

already. We’ll use a TouchableOpacity for the close button on the left. We’ll position
it with position: 'absolute', sincewe don’t want the text on the left to push the title
off-center (remember, using position: 'absolute'means the component no longer
affects other siblings in the layout). A real navigation library takes into account many
more cases such as text on the right, icons on either side, and long text that may bump
into the title. Let’s keep things simple and just handle the one case at hand.

The component function and styles should look like this:

image-feed/components/NavigationBar.js

export default function NavigationBar({

title,

leftText,

onPressLeftText,

}) {

return (

<View style={styles.container}>

<TouchableOpacity

style={styles.leftText}

onPress={onPressLeftText}

>

<Text>{leftText}</Text>

</TouchableOpacity>

<Text style={styles.title}>{title}</Text>

</View>

);

}

Core Components, Part 2 252

image-feed/components/NavigationBar.js

const styles = StyleSheet.create({

container: {

height: 40,

borderBottomWidth: StyleSheet.hairlineWidth,

borderBottomColor: 'rgba(0,0,0,0.1)',

alignItems: 'center',

justifyContent: 'center',

},

title: {

fontWeight: '500',

},

leftText: {

position: 'absolute',

left: 20,

top: 0,

bottom: 0,

justifyContent: 'center',

},

});

Despite generally representing a numeric value, fontWeight must be a
string!

We now have all of the building blocks we need: CommentInput, CommentList, and
NavigationBar. Let’s assemble them in a new screen.

Comments screen

Create a new file Comments.js within the screens directory.

Within our new screen, we’ll want to render first the NavigationBar, then the
CommentInput, and finally the CommentList. We want this screen to take 4 props:

Core Components, Part 2 253

• comments - The array of comments to display.
• onClose - A function prop to call when the user presses the close button.
• onSubmitComment - A function prop to call when the user adds a new comment.
• style - The style to apply to the top-level View of this screen (just like we did
with Feed)

Add the following to Comments.js:

image-feed/screens/Comments.js

1 import { SafeAreaView, ViewPropTypes } from 'react-native';

2 import PropTypes from 'prop-types';

3 import React from 'react';

4

5 import CommentInput from '../components/CommentInput';

6 import CommentList from '../components/CommentList';

7 import NavigationBar from '../components/NavigationBar';

8

9 export default function Comments({

10 style,

11 comments,

12 onClose,

13 onSubmitComment,

14 }) {

15 return (

16 <SafeAreaView style={style}>

17 <NavigationBar

18 title="Comments"

19 leftText="Close"

20 onPressLeftText={onClose}

21 />

22 <CommentInput

23 placeholder="Leave a comment"

24 onSubmit={onSubmitComment}

25 />

26 <CommentList items={comments} />

27 </SafeAreaView>

Core Components, Part 2 254

28);

29 }

30

31 Comments.propTypes = {

32 style: ViewPropTypes.style,

33 comments: PropTypes.arrayOf(PropTypes.string).isRequired,

34 onClose: PropTypes.func.isRequired,

35 onSubmitComment: PropTypes.func.isRequired,

36 };

37

38 Comments.defaultProps = {

39 style: null,

40 };

The code for our screen is fairly simple, since we already built the different parts of
the UI as individual components.

Putting it all together

Now we need to allow navigation from the Feed screen we made earlier with this
new Comments screen.

We want the Comments screen to slide up and cover the entire screen, so we’ll use the
built-in Modal component.

Modal

The Modal component lets us transition to an entirely different screen. This is most
useful for simple apps, since for complex apps you’ll likely be using a navigation
library which will come with its own way of doing modals.

Common props include:

• animationType - This controls how the modal animates in and out. One of
'none', 'slide', or 'fade' (defaults to 'none').

Core Components, Part 2 255

• onRequestClose - A function calledwhen the user taps theAndroid back button.
• onShow - A function called after the modal is fully visible.
• transparent - A bool determining whether the background of the modal is
transparent.

• visible - A bool determining whether the modal is visible or not.

The visible prop is the most important, since this lets us show and hide the Modal.

Adding Modal to App

We’ll maintain the state of the Modal in the state of our App component. We’ll use
the visible prop of the Modal component to show and hide it, so we’ll want to store
a boolean showModal in state. We’ll also want to store the id of the image we’re
viewing comments for, so we’ll store selectedItemId in state too. And we’ll want
to store the actual text for the comments we type in, so let’s create an object that
maps from an image id to an array of comment strings. Let’s update the state in
App.js to look like this:

image-feed/App.js

state = {

commentsForItem: {},

showModal: false,

selectedItemId: null,

};

Next, we’ll make two function properties on our App component, for updating state

in order to open and close the Modal.

Core Components, Part 2 256

image-feed/App.js

openCommentScreen = id => {

this.setState({

showModal: true,

selectedItemId: id,

});

};

closeCommentScreen = () => {

this.setState({

showModal: false,

selectedItemId: null,

});

};

Notice that our openCommentScreen function takes the id of the image we want to
display comments for. We’ll need to call this function from within the CardList in
order pass that id. Then we’ll propagate the value through Feed and up to App. Save
App.js and let’s head over to CardList.js to make this possible.

Updating CardList with comments

We want the “Comments” link on each card to open the Modal we just created:

To do this, let’s tweak our CardList component, adding an onPressComments prop
(which we can use to call openCommentScreen) and a commentsForItem prop (which
we can use to display the number of comments per image).

Core Components, Part 2 257

image-feed/components/CardList.js

// ...

export default class CardList extends React.Component {

static propTypes = {

items: PropTypes.arrayOf(

PropTypes.shape({

id: PropTypes.number.isRequired,

author: PropTypes.string.isRequired,

}),

).isRequired,

commentsForItem: PropTypes.objectOf(

PropTypes.arrayOf(PropTypes.string),

).isRequired,

onPressComments: PropTypes.func.isRequired,

};

// ...

}

// ...

Let’s call onPressComments from within renderItem, passing the id of the item so
that we know which image to display comments for.

image-feed/components/CardList.js

renderItem = ({ item: { id, author } }) => {

const { commentsForItem, onPressComments } = this.props;

const comments = commentsForItem[id];

return (

<Card

fullname={author}

image={{

uri: getImageFromId(id),

Core Components, Part 2 258

}}

linkText={`${comments ? comments.length : 0} Comments`}

onPressLinkText={() => onPressComments(id)}

/>

);

};

There’s one small problem with our CardList so far: the count of comments we use
for the linkTextwon’t immediately update when we add new comments. This is due
to how the FlatList decideswhether or not to re-render items; the FlatListwill only
re-render an itemwhen the data prop changes or when scrolling. In this case, we pass
the items prop of CardList into the data prop of FlatList, but our commentsForItem
prop doesn’t cause the items array to change, so the FlatList won’t update when
new comments are added. We can use the prop extraData of FlatList to inform the
FlatList that it should monitor another source of input data for changes.

Let’s update the render method within CardList, passing commentsForItem as the
extraData prop of FlatList.

image-feed/components/CardList.js

// ...

const { items, commentsForItem } = this.props;

return (

<FlatList

data={items}

renderItem={this.renderItem}

keyExtractor={keyExtractor}

extraData={commentsForItem}

/>

);

// ...

Save CardList.js. This will put your app in an error state, since CardList isn’t
currently being passed a commentsForItem prop.

Core Components, Part 2 259

Let’s fix that!

Updating Feed with comments

Open Feed.js. We need to accept commentsForItem and onPressComments here too,
and pass them into CardList.

Update the propTypes:

Core Components, Part 2 260

image-feed/screens/Feed.js

static propTypes = {

style: ViewPropTypes.style,

commentsForItem: PropTypes.objectOf(

PropTypes.arrayOf(PropTypes.string),

).isRequired,

onPressComments: PropTypes.func.isRequired,

};

And update the render method:

image-feed/screens/Feed.js

render() {

const { commentsForItem, onPressComments, style } = this.props;

// ..

return (

<SafeAreaView style={style}>

<CardList

items={items}

commentsForItem={commentsForItem}

onPressComments={onPressComments}

/>

</SafeAreaView>

);

}

// ...

Save Feed.js. You should still see the same errormessage, sincewe’re still not passing
a value for commentsForItem into Feed.

Core Components, Part 2 261

Updating App with comments

Let’s head back to App.js to connect these new props we’ve just added to Feed and
to render the screen.

Import the Modal component and our Comments component:

image-feed/App.js

import { Modal, Platform, StyleSheet, View } from 'react-native';

// ...

import Comments from './screens/Comments';

Then update the rendermethod to render Comments and update Feedwith new props:

image-feed/App.js

// ...

export default class App extends React.Component {

// ...

render() {

const { commentsForItem, showModal, selectedItemId } = this.state;

return (

<View style={styles.container}>

<Feed

style={styles.feed}

commentsForItem={commentsForItem}

onPressComments={this.openCommentScreen}

/>

<Modal

visible={showModal}

animationType="slide"

onRequestClose={this.closeCommentScreen}

Core Components, Part 2 262

>

<Comments

style={styles.container}

comments={commentsForItem[selectedItemId] || []}

onClose={this.closeCommentScreen}

// ...

/>

</Modal>

</View>

);

}

}

// ...

We’ll also add one new style for the comments screen:

image-feed/App.js

// ...

const styles = StyleSheet.create({

// ...

comments: {

flex: 1,

marginTop:

Platform.OS === 'ios' && platformVersion < 11

? Constants.statusBarHeight

: 0,

},

});

Like before, we need to handle iOS versions below 11 separately by adding a top
margin. Modals naturally sit below the status bar on Android, so we only need a top
margin on iOS in this case.

Core Components, Part 2 263

After saving App.js, you’ll be able to open and close the Comments screen! Tap any
"Comments" link to open it, and tap the "Close" button in the NavigationBar to close
it.

There should still be a warning about a missing onSubmitComment prop. Let’s add that
next.

Adding new comments

Now that we can access our new Comments screen, we’ll want to be able to type new
comments.

Let’s create a function property onSubmitComment on our App component for saving a
new comment into the commentsForItem object in our state. Since our commentsForItem
object should be immutable (it’s part of state), we’ll create a new object and copy
over the existing keys and values using the ... object spread syntax. For our
selectedItemId, we’ll either update the comments array within commentsForItem,
copying over existing comments with the ... array spread syntax, or we’ll create a
new array if this is the first comment.

image-feed/App.js

// ...

onSubmitComment = (text) => {

const { selectedItemId, commentsForItem } = this.state;

const comments = commentsForItem[selectedItemId] || [];

const updated = {

...commentsForItem,

[selectedItemId]: [...comments, text],

};

this.setState({ commentsForItem: updated });

};

// ...

Core Components, Part 2 264

Since we’re creating a new commentsForItem object, when we end up passing it
into Feed, the Feed will pass it to the FlatList as extraData, triggering a re-render
(updating the "0 Comments" text).

Computed property names
When defining object literals, we can dynamically compute property names by
putting array brackets around the property name. For example:

const name = 'foo';

const obj = { [name]: 'bar' };

console.log(obj.foo); // => 'bar'

This is roughly equivalent to:

const name = 'foo';

const obj = {};

obj[name] = 'bar';

Computed property names are convenient in cases like the above example, where
we want the object literal to have property names based on dynamic values.

The last step for typing new comments is to pass the onSubmitComment function to
the Comments component when rendering:

image-feed/App.js

// ...

return (

<View style={styles.container}>

<Feed

style={styles.feed}

commentsForItem={commentsForItem}

onPressComments={this.openCommentScreen}

/>

Core Components, Part 2 265

<Modal

visible={showModal}

animationType="slide"

onRequestClose={this.closeCommentScreen}

>

<Comments

style={styles.comments}

comments={commentsForItem[selectedItemId] || []}

onClose={this.closeCommentScreen}

onSubmitComment={this.onSubmitComment}

/>

</Modal>

</View>

);

// ...

Save App.js, then go ahead and play around with the app for a bit! You should be
able to tap the “0 Comments” text at the top right of each image to open up the Modal
containing the Comments screen. You should be able to type new comments and see
them appear in the list of comments. When you close the Modal, you should see the
number of comments has increased for the image you chose.

Bonus: Persisting comments to device storage

You may have noticed that any comments you added will disappear if you reload the
app. This is because we don’t save them anywhere.

As an optional final step, we can persist the comments we write to the device via
the AsyncStorage API. AsyncStorage is a simple key-value store provided by React
Native for storing small quantities of string data (which we usually serialize as
JSON). Like the name implies, saving and reading from this store both happen asyn-
chronously.We can call AsyncStorage.getItem(key) and AsyncStorage.setItem(key,
value) to store and retrieve a string value using a string key.

In App.js, we’ll first need to import AsyncStorage:

Core Components, Part 2 266

image-feed/App.js

import {

AsyncStorage,

Modal,

Platform,

StyleSheet,

View,

} from 'react-native';

Then we’ll define an arbitrary key for persisting our comments object as JSON:

image-feed/App.js

const ASYNC_STORAGE_COMMENTS_KEY = 'ASYNC_STORAGE_COMMENTS_KEY';

Then we’ll update our componentDidMount and onSubmitComment to save and read
from AsyncStorage, respectively. Sincewe can only store string values using AsyncStorage,
if we want to store a complex object, we’ll have to serialize it to JSON first. To do this,
we can call JSON.stringify before storing values and JSON.parse after retreiving
them.

We’ll load all comments into state when our App mounts:

image-feed/App.js

async componentDidMount() {

try {

const commentsForItem = await AsyncStorage.getItem(

ASYNC_STORAGE_COMMENTS_KEY,

);

this.setState({

commentsForItem: commentsForItem

? JSON.parse(commentsForItem)

: {},

});

} catch (e) {

Core Components, Part 2 267

console.log('Failed to load comments');

}

}

Then we’ll update the stored comments anytime we add a new comment by
modifying onSubmitComment:

// ...

onSubmitComment = async text => {

const { selectedItemId, commentsForItem } = this.state;

const comments = commentsForItem[selectedItemId] || [];

const updated = {

...commentsForItem,

[selectedItemId]: [...comments, text],

};

this.setState({ commentsForItem: updated });

try {

await AsyncStorage.setItem(

ASYNC_STORAGE_COMMENTS_KEY,

JSON.stringify(updated),

);

} catch (e) {

console.log(

'Failed to save comment',

text,

'for',

selectedItemId,

);

}

};

// ...

Core Components, Part 2 268

Note that getItem and setItem both return promises that can fail (e.g. when disk I/O
fails), so we need to use async/await and wrap the calls in try/catch.

That’s all we had to do to persist comments to disk! Now when you write comments
and reload the app, they’ll still be there. Give it a shot!

Wrapping up

Many of the built-in components we’ve covered in this chapter are highly generic
and resusable: View, Text, Image, ScrollView, and FlatList. The bulk of the UI in
most apps will be written with a combination of these components.

We covered a few other components which are for more specialized use cases, like
ActivityIndicator, TextInput, and Modal. There are many more components like
this which we didn’t cover.

You don’t need to memorize every built-in React Native component – in fact, there
are some components you’ll probably never need. The important thing is: you now
have a strong foundation in how React Native works, so you’ll be able to figure out
how to use any built-in component just by reading the docs.

UI components are a huge part of what React Native has to offer. However, most apps
need more than just UI components. There’s another big part of React Native which
we touched on in this chapter: imperative APIs. These are APIs (like AsyncStorage)
which we can call from the component lifecycle to fetch data, access the camera
roll, query our geolocation, etc. In the next chapter, we’ll explore some of the most
common React Native APIs.

Core APIs, Part 1
So far we’ve primarily used React components to interact with the underlying native
APIs –we’ve used components like View, Text, and Image to create native UI elements
on the screen.

React provides a simple, consistent interface for APIs which create visual compo-
nents. Some APIs don’t create UI components though: for example, accessing the
Camera Roll, or querying the current network connectivity of the device.

React Native also comes with APIs for interacting with these non-visual native APIs.
In contrast with components, these APIs are generally imperative functions: we
must call them explicitly at the right time, rather than returning something from a
component’s render function and letting React call them later. React Native simply
provides us a JavaScript wrapper, often cross-platform, for controlling the underlying
native APIs.

Starting with React Native version 0.59, many of the “core” APIs were split into
separate npm packages, in an effort to reduce the bundle size of React Native apps.
For example, the NetInfo API (for detecting network status changes) was originally
included in all React Native apps, but will now only be included if you install
@react-native-community/netinfo. We’ll be installing several such APIs in this
chapter.

Building a messaging app

In this chapter, we’ll build the start of a messaging app (similar to iMessage) that
gives us a tour of some of the most common core APIs. Our app will let us send text,
send photos from the camera roll, and share our location. It will let us know when
we are disconnected from the network. It will handle keyboard interactions and the
back button on Android.

To try the completed app:

Core APIs, Part 1 270

• On Android, you can scan the following QR code from within the Expo app:

• On iOS, you can navigate to the messaging/ directory within our sample code
folder and build the app. You can either preview it using the iOS simulator or
send the link of the project URL to your device as we mentioned in the first
chapter.

We can send text messages, images, and maps:

Core APIs, Part 1 271

We can choose images from our device camera roll:

Core APIs, Part 1 272

And we can view images fullscreen:

Core APIs, Part 1 273

We’ll use the following APIs:

• Alert - Displays modal dialog windows for simple user input
• BackHandler - Controls the back button on Android
• CameraRoll - Returns images and videos stored on the device
• Dimensions - Returns the dimensions of the screen
• Geolocation - Returns the location of the device, and emits events when the
location changes

• Keyboard - Emits events when the keyboard appears or disappears
• NetInfo - Returns network connectivity information, and emits events when
the connectivity changes

• PixelRatio - Translates from density-independent pixels to density-dependent
pixels (more detail on this later)

• StatusBar - Controls the visibility and color of the status bar

We’ll just be focusing on the UI, so we won’t actually send messages, but we could
connect the UI we build to a backend if we wanted to use it in a production app.

Core APIs, Part 1 274

Initializing the project

Just as we did in the previous chapters, let’s create a new app with the following
command:

$ expo init messaging --template blank@sdk-36 --yarn

Once this finishes, navigate into the messaging directory.

In this chapter we’ll create the utils directory ourselves, so there’s no need to copy
over the sample code. We do however want to install a few additional node modules.
Run the following command expo add command to install the node modules we
need:

$ expo install expo-constants expo-permissions expo-media-library expo-\

cameraroll @react-native-community/netinfo react-native-maps

If you aren’t using Expo, instead of installing
expo-media-library and expo-cameraroll, you would install
@react-native-community/cameraroll.

The app

Let’s start by setting up the skeleton of the app. We’ll do this in App.js. After that,
we’ll build out the different parts of the screen, one component at a time. We’ll tackle
keyboard handling last, since that’s the most difficult and intricate.

We’ll follow the same general process as in the previous chapters: we’ll start by
breaking down the screen into components, building a hardcoded version, adding
state, and so on.

Core APIs, Part 1 275

The app’s skeleton

If we look at the app from top to bottom, these are the main sections of the UI:

• Status - The device generally renders a status bar, the horizontal strip at the
top of the screen that shows time, battery life, etc – but in this case, we’ll
augment it to show network connectivity more prominently. We’ll create our
own component, Status, which renders beneath the device’s status bar.

• MessageList - This is where we’ll render text messages, images, and maps.
• Toolbar - This is where the user can switch between sending text, images, or
location, and where the input field for typing messages lives.

• Input Method Editor (IME) - This is where we can render a custom input
method, i.e. sending images.We’ll build an image picker component, ImageGrid,

Core APIs, Part 1 276

and use it here. Note that the keyboard is rendered natively by the operating
system, so we will trigger the keyboard to appear and disappear at the right
times, but we won’t render it ourselves.

In this chapter we’ll be building top-down. We’ll start by representing the message
list, the toolbar, and the IMEwith a placeholder View. By starting with a rough layout,
we can then create components for each section, putting each one in its respective
View. Each section will be made up of a few different components.

Open App.js and add the following skeleton:

messaging/App.js

import { StyleSheet, View } from 'react-native';

import React from 'react';

export default class App extends React.Component {

renderMessageList() {

return (

<View style={styles.content}></View>

);

}

renderInputMethodEditor() {

return (

<View style={styles.inputMethodEditor}></View>

);

}

renderToolbar() {

return (

<View style={styles.toolbar}></View>

);

}

render() {

return (

Core APIs, Part 1 277

<View style={styles.container}>

{this.renderMessageList()}

{this.renderToolbar()}

{this.renderInputMethodEditor()}

</View>

);

}

}

const styles = StyleSheet.create({

container: {

flex: 1,

backgroundColor: 'white',

},

content: {

flex: 1,

backgroundColor: 'white',

},

inputMethodEditor: {

flex: 1,

backgroundColor: 'white',

},

toolbar: {

borderTopWidth: 1,

borderTopColor: 'rgba(0,0,0,0.04)',

backgroundColor: 'white',

},

});

When you save App.js, the app should reload on your device and you’ll see the
following:

Core APIs, Part 1 278

Awesome, a blank screenwith a small gray line through themiddle! Nowwe can start
building out the different sections of the screen. The App component will orchestrate
how data is populated, and when to hide or show the various input methods – but
first, we need to start creating the different components in the UI.

Now’s a good time to create a new directory, components, within our main messaging

directory. We’ll put the UI components we build in the components directory.

Network connectivity indicator

Since we’re building a messaging app, network connectivity is relevant at all times.
Let’s let the user know when they’ve lost connectivity by turning the status bar red
and displaying a short message.

Core APIs, Part 1 279

StatusBar

Many apps display the default status bar, but sometimes we want to customize the
style, e.g. turning the background red.

The status bar works a little differently on iOS and Android. On iOS the status bar
background is always transparent, so we can render content behind the status bar
text. On Android, we can set the status bar background to transparent, or to a specific
solid color. If we use a transparent status bar, we can render content behind it just like
on iOS – unlike on iOS, by default the status bar text is white and there’s typically
a semi-transparent black background. If we choose a solid color status bar, our app’s
content renders below the status bar, and the height of our UI will be a little smaller.
In our app, we’ll use a solid color status bar, since this will let us customize the color.

To use a solid color status bar, we need to open up app.json and add the following
to the expo object (although you can skip this if you’re not using an Android):

Core APIs, Part 1 280

messaging/app.json

"expo": {

// ...

"androidStatusBar": {

"barStyle": "dark-content",

"backgroundColor": "#FFFFFF"

}

}

Let’s restart the packager with npm run start to make sure this change takes effect.

If we had used react-native init instead of expo init, we wouldn’t
need to do this. Expo handles the status bar specially. You can check out
the guide on configuring the status bar⁵⁶ for more detail.

On both platforms, we can set the status bar text color by using the built-in
StatusBar component and passing a barStyle of either light-content (white text)
or dark-content (black text).

There are two different ways we can use StatusBar: imperatively and as a compo-
nent. In this example we’ll use the component approach.

Create a new file Status.js in the components directory now.

Status styles

Let’s first start with the background styles. We need to create a View that sits behind
the text of the status bar – on iOS, rendering the background color of the status bar
is our responsibility, since the operating system only renders the status bar text.

We’ll have two visual states: one where the user is connected to the network, and
one where the user is disconnected. We’ll set the color for each state in render, so
let’s start with the base style for the status bar:

⁵⁶https://docs.expo.io/versions/latest/guides/configuring-statusbar.html

https://docs.expo.io/versions/latest/guides/configuring-statusbar.html
https://docs.expo.io/versions/latest/guides/configuring-statusbar.html

Core APIs, Part 1 281

messaging/components/Status.js

import Constants from 'expo-constants';

import { StyleSheet } from 'react-native';

// ...

const statusHeight =

(Platform.OS === 'ios' ? Constants.statusBarHeight : 0);

const styles = StyleSheet.create({

status: {

zIndex: 1,

height: statusHeight,

},

// ...

});

The base style statuswill give the View its height. The Viewwill have the same height
regardless of whether this component is in the connected or disconnected state. We
use a zIndex of 1 to indicate that this View should be drawn on top of other content
– this will be relevant later, since we’re going to render a ScrollView beneath it.

Depending on the component’s state, we’ll then pass a style object containing a
background color (in addition to passing the status style).

We’ll store the network connectivity status in component state as state.isConnected.
If state.isConnected is true then the device is connected to the internet, and if it’s
false then the device is disconnected. We’ll set isConnected to true by default, since
that’s the most likely case, and since it would be a poor user experience to show a
connectivity message when it’s not needed.

Let’s try rendering this background View.

Core APIs, Part 1 282

messaging/components/Status.js

import Constants from 'expo-constants';

import NetInfo from '@react-native-community/netinfo';

import {

Platform,

StatusBar,

StyleSheet,

Text,

View,

} from 'react-native';

import React from 'react';

export default class Status extends React.Component {

state = {

isConnected: null,

};

// ...

render() {

const { isConnected } = this.state;

const backgroundColor = isConnected ? 'white' : 'red';

if (Platform.OS === 'ios') {

return (

<View style={[styles.status, { backgroundColor }]}></View>

);

}

return null; // Temporary!

}

}

// ...

Core APIs, Part 1 283

Notice how we use an array for the View to apply two styles: the status style, and
then a style object containing a different background color depending on whether
we’re connected to the network or not.

Let’s save Status.js and import it from App.js so we can see what we have so far.

We can now go ahead and render our new Status component from App:

messaging/App.js

// ...

import Status from './components/Status';

export default class App extends React.Component {

// ...

render() {

return (

<View style={styles.container}>

<Status />

{this.renderMessageList()}

{this.renderToolbar()}

{this.renderInputMethodEditor()}

</View>

);

}

// ...

}

// ...

We shouldn’t see anything yet… but to verify that everything is working, you can
temporarily set isConnected: 'false' in the state of Status. This will show a red
background behind the status bar text.

Core APIs, Part 1 284

Doing this, we should see:

Using StatusBar

The black text on the red background doesn’t look very good. This is where the
StatusBar component comes in. Let’s import it from react-native and render it
within our View.

Core APIs, Part 1 285

messaging/components/Status.js
import Constants from 'expo-constants';

import { StatusBar, StyleSheet, View } from 'react-native';

import React from 'react';

export default class Status extends React.Component {

state = {

isConnected: true,

};

// ...

render() {

const { isConnected } = this.state;

const backgroundColor = isConnected ? 'white' : 'red';

const statusBar = (

<StatusBar

backgroundColor={backgroundColor}

barStyle={isConnected ? 'dark-content' : 'light-content'}

animated={false}

/>

);

if (Platform.OS === 'ios') {

return (

<View style={[styles.status, { backgroundColor }]}>

{messageContainer}

</View>

);

}

return null; // Temporary!

}

}

Core APIs, Part 1 286

Here we set barStyle to dark-content if we’re connected (black text on our
white background) and light-content if we’re disconnected (white text on our
red background). We set backgroundColor to set the correct background color on
Android. We also set animated to false – since we’re not animating the background
color on iOS, animating the text color won’t look very good.

Note that the StatusBar component doesn’t actually render the status bar text.
We use this component to configure the status bar. We can render the StatusBar

component anywhere in the component hierarchy of our app to configure it, since
the status bar is configured globally.

We can even render StatusBar in multiple different components, e.g. we could
render it from App.js in addition to Status.js. If we do this, the props we set as
configuration are merged in the order the components mount. In practice it can be a
bit hard to follow the mount order, so it may be easier to use the imperative API if
you find yourself with many StatusBar components (more on this later).

Message bubble

Since the red status bar alone doesn’t indicate anything about network connectivity,
let’s also add a short message in a floating bubble at the top of the screen.

Core APIs, Part 1 287

If we’re not connected to the network, we’ll render a few more components. On
Android, since we don’t need to render the background behind the status bar, we
can return just the message bubble components.

messaging/components/Status.js

import Constants from 'expo-constants';

import NetInfo from '@react-native-community/netinfo';

import {

StatusBar,

StyleSheet,

Text,

View

} from 'react-native';

import React from 'react';

export default class Status extends React.Component {

// ...

Core APIs, Part 1 288

render() {

const { isConnected } = this.state;

const backgroundColor = isConnected ? 'white' : 'red';

const statusBar = (

<StatusBar

backgroundColor={backgroundColor}

barStyle={isConnected ? 'dark-content' : 'light-content'}

animated={false}

/>

);

const messageContainer = (

<View style={styles.messageContainer} pointerEvents={'none'}>

{statusBar}

{!isConnected && (

<View style={styles.bubble}>

<Text style={styles.text}>No network connection</Text>

</View>

)}

</View>

);

if (Platform.OS === 'ios') {

return (

<View style={[styles.status, { backgroundColor }]}>

{messageContainer}

</View>

);

}

return messageContainer;

}

}

Core APIs, Part 1 289

const styles = StyleSheet.create({

// ...

messageContainer: {

zIndex: 1,

position: 'absolute',

top: statusHeight + 20,

right: 0,

left: 0,

height: 80,

alignItems: 'center',

},

bubble: {

paddingHorizontal: 20,

paddingVertical: 10,

borderRadius: 20,

backgroundColor: 'red',

},

text: {

color: 'white',

},

});

Here we use absolute position to precisely position the message bubble on top of the
rest of the content we’ll render, without pushing our other content out of the way.We
use pointerEvent={'none'} so that this component doesn’t prevent us from tapping
the ScrollView we’ll render underneath it. The pointerEvents prop allows us to
control whether a component can respond to touch interactions, or whether they
pass through to the components behind it.

Save Status.js and you should see the following.

Core APIs, Part 1 290

Our connectivity indicator UI is looking good! Now it’s time to hook it up to the
device’s real network connectivity state.

NetInfo

We have isConnected in state, and we have logic to switch between showing a
connected and disconnected UI in our render method. Now we need to update this
state whenever network connectivity changes. We can do this using the NetInfo

APIs.

The NetInfo APIs are a good example of core React Native APIs: these provide a
uniform interface to the lower level native APIs on iOS and Android. React Native
is essentially providing JavaScript bindings and smoothing out platform differences
for us.

We can call NetInfo.fetch() to get the network connectivity status. NetInfo.fetch()
returns a promise which resolves to a boolean. If the device is connected, the boolean

Core APIs, Part 1 291

valuewill be true. If the device isn’t connected, the promise will still resolve, but with
the value false.

If we wanted to update our UI when the network connection changes, we could
continuously poll NetInfo.fetch() to get the network status – but this would be
inefficient. Instead, we can add an event listener to NetInfo. NetInfo provides the
method addEventListener, which we can call with a callback function, which it will
invoke each time the network status changes.

Here’s an example of using NetInfo.addEventListener:

const handler = (status) => {

console.log('Network status changed', status);

};

const subscription = NetInfo.addEventListener(handler);

This example would log a new status each time the network connectivity changes.
We can call the returned subscription function when we want to stop listening for
changes – most of the time, we’ll do this when our component unmounts.

For our app, we’ll use both:

• NetInfo.fetch and
• NetInfo.addEventListener.

First we’ll call NetInfo.fetch when the Status component mounts to get the initial
network connectivity.

Then we’ll use NetInfo.addEventListener to update our UI when a change occurs.

Let’s add the following lines to our Status component in Status.js:

Core APIs, Part 1 292

1 // ...

2

3 async componentDidMount() {

4 this.subscription = NetInfo.addEventListener(this.handleChange);

5

6 const { isConnected } = await NetInfo.fetch();

7

8 this.setState({ isConnected });

9 }

10

11 componentWillUnmount() {

12 this.subscription()

13 }

14

15 handleChange = ({ isConnected }) => {

16 this.setState({ isConnected });

17 };

18

19 // ...

Now we receive both the initial status and handle connectivity changes.

Note that we declared componentDidMount as an async method so that we can use
await when calling NetInfo.fetch(). Most of the React lifecycle methods can be
declared with async, since React doesn’t use the return value from these.

To test changes in network connectivity without setting the device to
airplane mode, we can add: setTimeout(() => this.handleChange({

isConncted: false }), 3000); to the end of componentDidMount. This
way we can observe the transition from our initial state (probably true)
to the disconnected state.

For reference, if we wanted to use the imperative approach to changing the status
bar style, we would write our handleChange as:

Core APIs, Part 1 293

handleChange = ({ isConnected }) => {

this.setState({ isConnected });

StatusBar.setBarStyle(

isConnected ? 'light-content' : 'dark-content'

);

};

We would then remove the <StatusBar ... /> component from our render

function. The StatusBar component is a little unusual because it doesn’t ac-
tually render anything. Under the hood, the StatusBar component just calls
StatusBar.setBarStyle at the appropriate times. Calling the imperative APIs
directly can be simpler than figuring out how and where to render StatusBar

components in a complex app.

Wrapping up StatusBar and NetInfo

We’re finished with the status bar and network connectivity indicator! We’ve just
written a cross-platform UI that works on both iOS and Android, with only a little
bit of platform-specific code.

For future improvements, we could consider animating the message bubble as it
appears and disappears, and animating the status bar as it changes colors. We’ll cover
this kind of animation in more depth in a later chapter. For now, let’s move on to the
message list.

The message list

Let’s create the message list. The message list will display a vertically scrolling list
of text messages, image messages, and location messages. We should be able to tap
the messages to potentially trigger other actions (e.g. view the image fullscreen).

Core APIs, Part 1 294

We’ll use the FlatList component we learned about in the previous chapter to handle
rendering the list. In order to do that, we should first decide how we’ll store our
message objects.

MessageUtils

Let’s first write a few utility functions for creating message objects so that we keep
this logic separate from our rendering logic.

Create a new directory called utils in the messaging directory. Within utils, create
a new file called MessageUtils.js.

Within MessageUtils.js, let’s first define the shape of eachmessage using PropTypes.shape.
All of the messages we render will have a type and an id, and then some messages
will have either a text, uri, or coordinate value, depending on the type.

Add the following to MessageUtils.js:

Core APIs, Part 1 295

messaging/utils/MessageUtils.js

import PropTypes from 'prop-types';

export const MessageShape = PropTypes.shape({

id: PropTypes.number.isRequired,

type: PropTypes.oneOf(['text', 'image', 'location']),

text: PropTypes.string,

uri: PropTypes.string,

coordinate: PropTypes.shape({

latitude: PropTypes.number.isRequired,

longitude: PropTypes.number.isRequired,

}),

});

By using this shape in the propTypes of a component, React will automatically warn
us if we accidentally pass invalid message data. Declaring our data models this way
is also great for documentation purposes: if another developer reads our component,
they’ll know exactly what the input data should look like, without having to sprinkle
console.log throughout the app and actually run it.

Declaring our data models this way is optional. For a model that will likely
be used in many places throughout the app, it’s probably worthwhile to
spend the extra effort. It isn’t as valuable for a model used within a single
component, or a model that you’re still iterating on during development.
If you decide to use a strongly-typed variant of JavaScript, i.e. Flow or
TypeScript, you’ll likely declare your types elsewhere and won’t need to
also declare PropTypes.

Next, let’s write a few utility functions for creating the different kinds of messages:

Core APIs, Part 1 296

messaging/utils/MessageUtils.js

let messageId = 0;

function getNextId() {

messageId += 1;

return messageId;

}

export function createTextMessage(text) {

return {

type: 'text',

id: getNextId(),

text,

};

}

export function createImageMessage(uri) {

return {

type: 'image',

id: getNextId(),

uri,

};

}

export function createLocationMessage(coordinate) {

return {

type: 'location',

id: getNextId(),

coordinate,

};

}

We created a utility getNextId() for getting a unique message id. It’s important
that we ensure uniqueness for each id, since we’ll be using the id as the key when
rendering these messages in a list.

Core APIs, Part 1 297

We would likely want to use a more sophisticated id, such as a UUID,
if we were actually connecting with a backend. Incrementing a number
works for our purposes, but once messages are persisted or coming from
multiple devices, there would be id collisions.

By exporting createTextMessage, createImageMessage, and createLocationMessage,
we can now easily create newmessages of each type from elsewhere in our app.We’ll
use these messages to populate the FlatList.

MessageList

Our MessageList component will render an array of the message objects we defined
in MessageUtils. We can determine how to render each message based on its type.

Let’s start by determining the propTypes for this component. Here’s a good op-
portunity to use the MessageShape we just defined. We’ll also want to notify the
parent component whenever a message in the list is pressed. We can do this using an
onPressMessage function prop.

Create a new file, MessageList.js, in our components directory. Add the following
to it:

messaging/components/MessageList.js

import React from 'react';

import PropTypes from 'prop-types';

import { MessageShape } from '../utils/MessageUtils';

export default class MessageList extends React.Component {

static propTypes = {

messages: PropTypes.arrayOf(MessageShape).isRequired,

onPressMessage: PropTypes.func,

};

static defaultProps = {

onPressMessage: () => {},

};

Core APIs, Part 1 298

// ...

}

By using our MessageShape, React will warn us if we’re passed malformed data.

Now let’s render our messages into a FlatList. Just as in the previous chapter, We
need to use a keyExtractor to tell the FlatList how to find the unique id of our
message objects.

Let’s update MessageList.js to render a FlatList:

messaging/components/MessageList.js

import { FlatList, StyleSheet } from 'react-native';

// ...

const keyExtractor = item => item.id.toString();

export default class MessageList extends React.Component {

// ...

renderMessageItem = ({ item }) => {

// ...

};

render() {

const { messages } = this.props;

return (

<FlatList

style={styles.container}

inverted

data={messages}

renderItem={this.renderMessageItem}

keyExtractor={keyExtractor}

keyboardShouldPersistTaps={'handled'}

Core APIs, Part 1 299

/>

);

}

}

const styles = StyleSheet.create({

container: {

flex: 1,

overflow: 'visible', // Prevents clipping on resize!

},

});

We looked at the data, renderItem, and keyExtractor props in the previous chapter.
There are a few new props here that are worth looking at in more detail.

inverted

In a messaging app, we typically want new messages to appear at the bottom of the
list. To accomplish this, we’ve added the inverted prop to our FlatList.

This “new-messages-at-the-bottom” behavior is difficult to achievewithout
using inverted. If we didn’t use inverted, every time a new message is
added, we would have to scroll to the bottom of the list by adding a ref to
the list and calling the scrollToEndmethod. While it may sound relatively
simple, it quickly gets complicated when we start adding asynchronous
animations, e.g. in response to the keyboard appearing. Since ScrollView

doesn’t support inverted, we almost always want to use a FlatList for
this.

Behind-the-scenes, our FlatList is vertically inverted using a transform

style, and then each row within the list is also vertically inverted. Since
rows are doubly inverted, they appear right-side-up. Pretty clever!

keyboardShouldPersistTaps

We use the keyboardShouldPersistTaps prop to configure what happens when we
tap the FlatList. This prop has three possible options:

Core APIs, Part 1 300

• never - Tapping the list will dismiss the keyboard and blur any focused
elements. This is the default behavior.

• always - Tapping the list will have no effect on the keyboard or focus.
• handled - Tapping the list will dismiss the keyboard, unless the tap is handled by
a child element first (e.g. tapping a message within the list). We want handled,
so that we enable tapping messages without dismissing the keyboard.

We add overflow: 'visible' to the style of the FlatList to prevent content from
getting clipped during animations. When an animation causes the list to resize to a
smaller size, the content within it will be clipped to the smaller size instantly, while
the list itself resizes gradually. If we don’t include this line, some content will get
clipped at the start of the animation that should actually be clipped at the end. It’ll
be easier to understand why this is necessary after we’re a bit further along. You can
comment out this property and observe the difference in behavior as the keyboard
appears.

Rendering messages

We’ve successfully set up a scrolling list, so now we can populate it with messages.
As a reminder, this is what we’re aiming to build:

Core APIs, Part 1 301

Let’s start with the styles. Conceptually, each message is a row in the list, so let’s call
our top-level message style messageRow and give it flexDirection: 'row'. We want
to align messages to the right using justifyContent: 'flex-end', but leave a little
space on the left with marginLeft: 60 in case our message gets long. Text messages
should appear in blue bubbles: this is what messageBubble is for.

messaging/components/MessageList.js

const styles = StyleSheet.create({

container: {

flex: 1,

overflow: 'visible', // Prevents clipping on resize!

},

messageRow: {

flexDirection: 'row',

justifyContent: 'flex-end',

marginBottom: 4,

marginRight: 10,

Core APIs, Part 1 302

marginLeft: 60,

},

messageBubble: {

paddingVertical: 5,

paddingHorizontal: 10,

backgroundColor: 'rgb(16,135,255)',

borderRadius: 20,

},

text: {

fontSize: 18,

color: 'white',

},

image: {

width: 150,

height: 150,

borderRadius: 10,

},

map: {

width: 250,

height: 250,

borderRadius: 10,

},

});

Feel free to experiment with other styles. There are a lot of ways to
customize a messaging app to give it a unique look.

Let’s move on to renderMessageItem and begin using the styles we just created. We
can start by updating our imports to include all of the components we’ll render from
MessageList:

Core APIs, Part 1 303

import { FlatList, Image, StyleSheet, Text, TouchableOpacity, View } fr\

om 'react-native';

import MapView from 'react-native-maps';

Here we’ll use MapView for the first time. You’ll notice we import this from Expo,
rather than from React Native. MapView comes from the 3rd party module:

react-native-maps,

which Expo includes by default. If we had created our app via react-native-cli

rather than expo init, wewould have to remember to install and link react-native-maps.

If you’re running an Android emulator, you’ll need the Google Play Ser-
vices installed to actually see a MapView (otherwise you’ll see a placeholder
label). You can create an emulator fromAndroid Studio with this, but it can
be difficult to connect it to Expo. If you don’t know how to do this already,
we recommend testing on a real Android device if possible.

React Native used to include a built-in MapView, but this has been removed
in favor of react-native-maps. The react-native-maps module quickly
became the de-facto standard for using maps in React Native, obsoleting
the original built-in version.

Then let’s add the following:

messaging/components/MessageList.js

// ...

renderMessageItem = ({ item }) => {

const { onPressMessage } = this.props;

return (

<View key={item.id} style={styles.messageRow}>

<TouchableOpacity onPress={() => onPressMessage(item)}>

{this.renderMessageBody(item)}

Core APIs, Part 1 304

</TouchableOpacity>

</View>

);

};

renderMessageBody = ({ type, text, uri, coordinate }) => {

// ...

}

// ...

Just as in the previous chapters, we use the id of the item as the key of the top-level
element we return, so React can keep track of existing items. Without this, React
would have to re-render all items when we add more, since it wouldn’t know which
items are old and which are new.

Wewant eachmessage to be tappable, sowewrap themessage body in a TouchableOpacity,
and call onPressItem with the item object when tapped.

Finally, we call this.renderMessageBody with the item (our message), where we’ll
render the body of each message. We’ll switch on the type of the message to decide
what to render.

messaging/components/MessageList.js

export default class MessageList extends React.Component {

// ...

renderMessageBody = ({ type, text, uri, coordinate }) => {

switch (type) {

case 'text':

return (

<View style={styles.messageBubble}>

<Text style={styles.text}>{text}</Text>

</View>

);

case 'image':

return <Image style={styles.image} source={{ uri }} />;

Core APIs, Part 1 305

case 'location':

return (

<MapView

style={styles.map}

initialRegion={{

...coordinate,

latitudeDelta: 0.08,

longitudeDelta: 0.04,

}}

>

<MapView.Marker coordinate={coordinate} />

</MapView>

);

default:

return null;

}

};

// ...

}

Each type of message, text, image, and location has a different kind of UI. Most of
the components we used for text and image should look pretty familiar.

For location messages, we use a MapView. The MapView API is fairly advanced, al-
lowing custom drawing and animations on top of maps. We’ll use the initialRegion
to supply a bounding box to display on the map, and we’ll create a MapView.Marker
to drop a pin at the coordinate in the message. You can read more about the MapView
API in the official docs for react-native-maps⁵⁷.

We now have a scrollable, tappable list of messages that supports different kinds of
content. Let’s test it out.

Adding MessageList to App

To test our new MessageList component, we can render it from within the method:
⁵⁷https://github.com/airbnb/react-native-maps

https://github.com/airbnb/react-native-maps
https://github.com/airbnb/react-native-maps

Core APIs, Part 1 306

renderMessageList of App.js.

Heading back to App.js now, we’ll need to import our new MessageList component
and our utility functions for creating messages:

messaging/App.js

// ...

import MessageList from './components/MessageList';

import {

createImageMessage,

createLocationMessage,

createTextMessage,

} from './utils/MessageUtils';

//...

We can use these utility functions to create a few sample messages in the initial state
of our app:

messaging/App.js

// ...

state = {

messages: [

createImageMessage('https://unsplash.it/300/300'),

createTextMessage('World'),

createTextMessage('Hello'),

createLocationMessage({

latitude: 37.78825,

longitude: -122.4324,

}),

],

};

handlePressMessage = () => {}

Core APIs, Part 1 307

renderMessageList() {

const { messages } = this.state;

return (

<View style={styles.content}>

<MessageList

messages={messages}

onPressMessage={this.handlePressMessage}

/>

</View>

);

}

// ...

We’ve now hooked up the hardcoded message data with our MessageList com-
ponent. We also added a placeholder handlePressMessage for handling tapping
messages. When you save App.js, if everything is working correctly, here’s what
you should see:

Core APIs, Part 1 308

We’re successfully rendering our message list! We can display messages of different
types and our new messages appear at the bottom, just like we’d expect from a
messaging app.

At this point, we have the prop onPressMessages set to the empty function:

handlePressMessage.

Let’s hook up a few different actions to onPressMessages.

Alert

The first action we’ll add is to text messages. We’ll add a “delete” feature: when the
user taps a text message, we’ll give the user the option to delete that message. We’ll
present a dialog with two choices: delete and cancel.

We can use the Alert.alert API to present the user with a native dialog window for
making this choice.

Core APIs, Part 1 309

Alert dialogs are commonly used for asking simple “yes or no” questions. The text
and quantity of buttons are configurable.

Alert dialogs can also be used for debugging. Sometimes it can be easier to
pop open an alert dialog than tracking down a console.log message.

The full method signature is Alert.alert(title, message?, buttons?, options?,

type?):

• title - A string, shown in a large bold font, at the top of the dialog
• message - A string, typically longer, shown in a normal weight font below the
title

• buttons - An array of objects containing text (a string), onPress (a callback
function), and optionally a style on iOS (styles can be one of default, cancel,
or destructive).

Core APIs, Part 1 310

• options - An object for controlling the dialog dismissal behavior on Android.
Tapping outside the dialog will normally exit the dialog. This can be prevented
by setting { cancelable: false } or handled specially with { onDismiss: ()

=> {} }.
• type - Allows text entry on iOS using one of the following options: default,
plain-text, secure-text, or login-password.

Let’s trigger an alert from App.js. First we’ll need to import Alert:

messaging/App.js

import {

Alert,

// ...

} from 'react-native';

Then we can add the following to our handlePressMessage method:

messaging/App.js

// ...

handlePressMessage = ({ id, type }) => {

switch (type) {

case 'text':

Alert.alert(

'Delete message?',

'Are you sure you want to permanently delete this message?',

[

{

text: 'Cancel',

style: 'cancel',

},

{

text: 'Delete',

style: 'destructive',

onPress: () => {

Core APIs, Part 1 311

const { messages } = this.state;

this.setState({

messages: messages.filter(

message => message.id !== id,

),

});

},

},

],

);

break;

default:

break;

}

};

// ...

After adding these lines, save App.js. When we tap a text message, we should see
something like this:

Core APIs, Part 1 312

Pressing “Delete” will remove the message from the list. We do this by filtering the
list of messages and removing the message with the id that we tapped. The removal
currently isn’t animated, but it will be when we’re finished with this app!

It’s fairly easy to call Alert incorrectly. If you’re coming from the web, you
might attempt to call Alert() rather than Alert.alert. You also might try
to call Alert.alert with parameters that are numbers instead of strings,
e.g. our message id. Both of these will crash the app with confusing error
messages. It’s also possible to get into a corrupted state, where you’ll have
to restart the app before Alert.alert will function properly again.

Deleting text messages is useful, but what should we do when the user taps other
kinds of messages? For images, let’s show the image fullscreen.

Fullscreen image

When the user presses an image, we’ll show it fullscreen.

Core APIs, Part 1 313

Transitioning to fullscreen might be accomplished using a navigation library (which
we’ll cover in a later chapter), but we can also do it manually. If we do, we’ll want the
Android back button to dismiss the fullscreen image – we can use the BackHandler
API to accomplish this. Let’s also dismiss the image when it’s pressed again, so that
we’re not trapped in a fullscreen image state on iOS.

In App.js, we’ll use state to keep track of which image was pressed. Let’s add the
following for state tracking:

Core APIs, Part 1 314

messaging/App.js

// ...

state = {

// ...

fullscreenImageId: null,

};

dismissFullscreenImage = () => {

this.setState({ fullscreenImageId: null });

};

// ...

We’ve initialized fullscreenImageId to null to indicate that we don’t want to show
any image. Then, when a message is pressed, we’ll set it to the id of the message
object. We can update handlePressMessage with the following:

messaging/App.js

// ...

handlePressMessage = ({ id, type }) => {

switch (type) {

case 'text':

// ...

case 'image':

this.setState({ fullscreenImageId: id });

break;

default:

break;

}

};

// ...

Core APIs, Part 1 315

Nowwe need to render the fullscreen image. We’ll use a TouchableHighlight for the
black overlay background so we can tap it to dismiss the image. Within that, we’ll
use an Image. We’ll use the fullscreenImageId to look up which image we need to
display as the uri of the Image component.

First, let’s import Image and TouchableHighlight:

messaging/App.js

import {

// ...

Image,

TouchableHighlight,

} from 'react-native';

Then we can set up the styles:

messaging/App.js

const styles = StyleSheet.create({

// ...

fullscreenOverlay: {

...StyleSheet.absoluteFillObject,

backgroundColor: 'black',

zIndex: 2,

},

fullscreenImage: {

flex: 1,

resizeMode: 'contain',

},

});

We’ll use the built-in StyleSheet.absoluteFillObject so that our overlay back-
ground is fullscreen, and then we’ll add zIndex: 2 so that it renders on top of the
rest of our UI. Our image should fill the overlay, so we use flex: 1.

Next, let’s create a helper method for rendering the fullscreen image called:

renderFullscreenImage.

Core APIs, Part 1 316

We can also use this method to determine if we need to show an image. We’ll call
this from render.

Add the following:

messaging/App.js

// ...

renderFullscreenImage = () => {

const { messages, fullscreenImageId } = this.state;

if (!fullscreenImageId) return null;

const image = messages.find(

message => message.id === fullscreenImageId,

);

if (!image) return null;

const { uri } = image;

return (

<TouchableHighlight

style={styles.fullscreenOverlay}

onPress={this.dismissFullscreenImage}

>

<Image style={styles.fullscreenImage} source={{ uri }} />

</TouchableHighlight>

);

};

// ...

render() {

return (

<View style={styles.container}>

<Status />

Core APIs, Part 1 317

{this.renderMessageList()}

{this.renderToolbar()}

{this.renderInputMethodEditor()}

{this.renderFullscreenImage()}

</View>

);

}

Save App.js. Now when we tap an image, we should see it fullscreen, and we can
tap it again to dismiss it:

On Android though, we’ll also want the device’s back button to dismiss the image.
We do this using the BackHandler API.

Core APIs, Part 1 318

BackHandler

If you’re not using an Android, you can skip this section!

Like with NetInfo, we use the event listener pattern to handle back button press
events:

BackHandler.addEventListener('hardwareBackPress', handlerFunction);

We can use this to get notified every time the user presses the back button on an
Android device. We’ll have our handlerFunction hide our fullscreen image.

We can return true from our handlerFunction to indicate that we’ve handled the
back button. By returning false, we indicate that we didn’t handle the event.
Therefore, if any other functions have been registered, the next one registered should
be called. These functions are called in the reverse of the order they were registered
– the last handler registered will be called first. If no handler returns true, then the
back button will exit to the home screen (the default back button behavior).

First, import the BackHandler API:

messaging/App.js

import {

// ...

BackHandler,

} from 'react-native';

Then we’ll use componentDidMount and componentWillUnmount to listen to back
button presses:

Core APIs, Part 1 319

messaging/App.js

// ...

componentDidMount() {

this.subscription = BackHandler.addEventListener(

'hardwareBackPress',

() => {

const { fullscreenImageId } = this.state;

if (fullscreenImageId) {

this.dismissFullscreenImage();

return true;

}

return false;

},

);

}

componentWillUnmount() {

this.subscription.remove();

}

// ...

If state.fullscreenImageId exists, then we’re currently showing a fullscreen image,
so we’ll want the back button to dismiss it. We return true to indicate that we
shouldn’t exit the app. If we’re not showing a fullscreen image, we return false.
Because no other handlers should be registered, this will allow for the default back
button behavior (exiting the app).

Our message list is working pretty well now! We’ve used two core APIs, Alert
and BackHandler, to create cross-platform interactions for deleting and enlarging
messages. Now that we’ve finished with the message list, let’s move on to the next
section of the UI and create the toolbar.

Core APIs, Part 1 320

Toolbar

The toolbar will sit above the keyboard and contain an input field for typing
messages, alongwith buttons for switching to an image picker and sending a location.

Building the Toolbar

The toolbar is similar to the CommentInput from the Core Components chapter: it
maintains the state of a TextInput field internally and uses an onSubmit function
prop to tell the parent when the message is ready to send. We’ll need a little more
control over the focus state of the TextInput this time, so we’ll use an isFocused

prop to control the focus state and an onChangeFocus function prop to tell the parent
when the state should changes.

Let’s create a new file Toolbar.js in the components directory, and render the top
level Viewwhich will contain all the elements in the toolbar. We’ll add propTypes for
the focus state and the various functions which the parent component can pass in:

Core APIs, Part 1 321

messaging/components/Toolbar.js
import {

StyleSheet,

Text,

TextInput,

TouchableOpacity,

View,

} from 'react-native';

import PropTypes from 'prop-types';

import React from 'react';

export default class Toolbar extends React.Component {

static propTypes = {

isFocused: PropTypes.bool.isRequired,

onChangeFocus: PropTypes.func,

onSubmit: PropTypes.func,

onPressCamera: PropTypes.func,

onPressLocation: PropTypes.func,

};

static defaultProps = {

onChangeFocus: () => {},

onSubmit: () => {},

onPressCamera: () => {},

onPressLocation: () => {},

};

render() {

return (

<View style={styles.toolbar}>

{/* ... */}

</View>

);

}

}

Core APIs, Part 1 322

const styles = StyleSheet.create({

toolbar: {

flexDirection: 'row',

alignItems: 'center',

paddingVertical: 10,

paddingHorizontal: 10,

paddingLeft: 16,

backgroundColor: 'white',

},

// ...

});

Let’s add a camera button and a location button and use them to call the onPressCamera
and onPressLocation props.

1 // ...

2

3 const ToolbarButton = ({ title, onPress }) => (

4 <TouchableOpacity onPress={onPress}>

5 <Text style={styles.button}>{title}</Text>

6 </TouchableOpacity>

7);

8

9 ToolbarButton.propTypes = {

10 title: PropTypes.string.isRequired,

11 onPress: PropTypes.func.isRequired,

12 };

13

14 export default class Toolbar extends React.Component {

15 // ...

16

17 render() {

18 const { onPressCamera, onPressLocation } = this.props;

19

20 return (

Core APIs, Part 1 323

21 <View style={styles.toolbar}>

22 {/* Use emojis for icons instead! */}

23 <ToolbarButton title={'C'} onPress={onPressCamera} />

24 <ToolbarButton title={'L'} onPress={onPressLocation} />

25 {/* ... */}

26 </View>

27);

28 }

29 }

30

31 const styles = StyleSheet.create({

32 // ...

33 button: {

34 top: -2,

35 marginRight: 12,

36 fontSize: 20,

37 color: 'grey',

38 },

39 // ...

40 });

We can use emojis here for button icons! They require some positioning tweaks in
styles.button, but look decent on both platforms. Later we could swap these out
for images or an icon font.

Unfortunately our PDF-creation software doesn’t handle emojis very well,
so we couldn’t include them in the code snippet. You’ll have to grab them
from the sample code or choose emojis of your own!

We define a ToolbarButton component at the top of the file which we can use in the
toolbar. This component is fairly small and styled specifically for use in the toolbar,
so we leave it in the same file as Toolbar. In terms of coding style, it’s common to
define small utility components in the same file that they’re used, and move them
into separate files later if we want to reuse them.

Now let’s render a TextInput. As a reminder from the Core Components chapter:
when we style a TextInput, it’s often easier to put styles like border and padding on

Core APIs, Part 1 324

a wrapper View. Otherwise we tend to run into slight rendering inconsistencies, e.g.
borders not rendering.

1 // ...

2

3 export default class Toolbar extends React.Component {

4 // ...

5

6 state = {

7 text: '',

8 };

9

10 handleChangeText = (text) => {

11 this.setState({ text });

12 };

13

14 handleSubmitEditing = () => {

15 const { onSubmit } = this.props;

16 const { text } = this.state;

17

18 if (!text) return;

19

20 onSubmit(text);

21 this.setState({ text: '' });

22 };

23

24 render() {

25 const { onPressCamera, onPressLocation } = this.props;

26 const { text } = this.state;

27

28 return (

29 <View style={styles.toolbar}>

30 {/* Use emojis for icons instead! */}

31 <ToolbarButton title={'C'} onPress={onPressCamera} />

32 <ToolbarButton title={'L'} onPress={onPressLocation} />

33 <View style={styles.inputContainer}>

Core APIs, Part 1 325

34 <TextInput

35 style={styles.input}

36 underlineColorAndroid={'transparent'}

37 placeholder={'Type something!'}

38 blurOnSubmit={false}

39 value={text}

40 onChangeText={this.handleChangeText}

41 onSubmitEditing={this.handleSubmitEditing}

42 // ...

43 />

44 </View>

45 </View>

46);

47 }

48 }

49

50 const styles = StyleSheet.create({

51 // ...

52 inputContainer: {

53 flex: 1,

54 flexDirection: 'row',

55 borderWidth: 1,

56 borderColor: 'rgba(0,0,0,0.04)',

57 borderRadius: 16,

58 paddingVertical: 4,

59 paddingHorizontal: 12,

60 backgroundColor: 'rgba(0,0,0,0.02)',

61 },

62 input: {

63 flex: 1,

64 fontSize: 18,

65 },

66 });

Just like in the previous chapter, we store the value of the input field as state.text.
When the user presses the return key on the keyboard, we call onSubmit with this

Core APIs, Part 1 326

value and then reset state.text. Our messaging app doesn’t allow sending multiline
messages (we’re using the return key to submit, so there’s no way to insert a newline).

We use blurOnSubmit={false} so that the keyboard isn’t dismissed when the user
presses the return key. This is common in messaging apps, since it allows sending
multiple messages in a row more easily.

We’ll need more control over the input field’s internal state than we did in the
previous chapter. We’ll need to focus and blur the input field at specific times. We
need to do this because when the user presses the camera icon, we want to dismiss
the keyboard. The built-in React Native APIs for this are imperative: we have to call
.focus() and .blur() on an instance of TextInput. We’ll contain this complexity in
this component, so that App can use an isFocused prop to declare the focus state. In
order to do this, we’ll use a ref prop.

Refs

React let’s us access the instance of any component we render using a ref prop. This
is a special prop that we can supply a callback – the callback will be called with the
instance as a parameter, after the component mounts (and before it unmounts). We
can store a reference to the component instance.

You can think of a component instance as the “this” when we access this.props or
any method that’s part of our class. In this case, the TextInput component class has a
focus and blurmethod that can be called from the component instance. We can call
these from within the lifecycle of our custom component to control the focus state
of the TextInput.

Storing a ref

Let’s capture a reference to the TextInput element we render.

We’ll store this reference as this.input. We can then use this reference to impera-
tively focus and blur the input fieldwith this.input.focus() and this.input.blur()
when the isFocused prop changes.

Core APIs, Part 1 327

1 // ...

2

3 export default class Toolbar extends React.Component {

4 // ...

5

6 setInputRef = (ref) => {

7 this.input = ref;

8 };

9

10 componentDidUpdate(prevProps) {

11 if (this.props.isFocused !== prevProps.isFocused) {

12 if (this.props.isFocused) {

13 this.input.focus();

14 } else {

15 this.input.blur();

16 }

17 }

18 }

19

20 handleFocus = () => {

21 const { onChangeFocus } = this.props;

22

23 onChangeFocus(true);

24 };

25

26 handleBlur = () => {

27 const { onChangeFocus } = this.props;

28

29 onChangeFocus(false);

30 };

31

32 // ...

33

34 render() {

35 const { onPressCamera, onPressLocation } = this.props;

36

Core APIs, Part 1 328

37 // Grab this from state!

38 const { text } = this.state;

39

40 return (

41 <View style={styles.toolbar}>

42 {/* Use emojis for icons instead! */}

43 <ToolbarButton title={'C'} onPress={onPressCamera} />

44 <ToolbarButton title={'L'} onPress={onPressLocation} />

45 <View style={styles.inputContainer}>

46 <TextInput

47 style={styles.input}

48 underlineColorAndroid={'transparent'}

49 placeholder={'Type something!'}

50 blurOnSubmit={false}

51 value={text}

52 onChangeText={this.handleChangeText}

53 onSubmitEditing={this.handleSubmitEditing}

54

55 // Additional props!

56 ref={this.setInputRef}

57 onFocus={this.handleFocus}

58 onBlur={this.handleBlur}

59 />

60 </View>

61 </View>

62);

63 }

64 }

The onFocus prop of the TextInputwill be called when the user taps within the input
field, and the onBlur prop will be called when the user taps outside the input field.
We use handleFocus and handleBlur to notify the parent of changes to the focus
state.

Whenever the parent passes a different value for the isFocused prop, we update the
focus state of the TextInput by calling this.input.focus() or this.input.blur()
in componentDidUpdate.

Core APIs, Part 1 329

Go ahead and save Toolbar.js. We can now control the focus state of the toolbar
entirely from App using isFocused and onChangeFocus. We won’t use this much in
the next section, but it’ll be very important when working with the keyboard near
the end of the chapter.

Adding Toolbar to App

Let’s now render our Toolbar component from App.js. We can handle the onSubmit
event to populate our message list with real messages. When we type in the input
field and submit the text (by pressing the return key on the keyboard), we can add a
newmessage to the messages in state using our createTextMessage utility function.
We’ll also add a few callback functions as placeholders.

messaging/App.js

import Toolbar from './components/Toolbar';

// ...

export default class App extends React.Component {

state = {

// ...

isInputFocused: false,

}

handlePressToolbarCamera = () => {

// ...

}

handlePressToolbarLocation = () => {

// ...

}

handleChangeFocus = (isFocused) => {

this.setState({ isInputFocused: isFocused });

};

Core APIs, Part 1 330

handleSubmit = (text) => {

const { messages } = this.state;

this.setState({

messages: [createTextMessage(text), ...messages],

});

};

renderToolbar() {

const { isInputFocused } = this.state;

return (

<View style={styles.toolbar}>

<Toolbar

isFocused={isInputFocused}

onSubmit={this.handleSubmit}

onChangeFocus={this.handleChangeFocus}

onPressCamera={this.handlePressToolbarCamera}

onPressLocation={this.handlePressToolbarLocation}

/>

</View>

);

}

// ...

}

// ...

We’ll store isInputFocused in this.state to keep track of the focus state of the
TextInput in toolbar.

After saving App.js, our toolbar should look like this:

Core APIs, Part 1 331

There’s an interesting edge case when we open a fullscreen image preview while the
input field is focused – the keyboard stays up even though the input field is no longer
visible!

Core APIs, Part 1 332

We can address this by updating our handlePressMessage function to also set
isInputFocused: false in the component’s state.

messaging/App.js

// ...

handlePressMessage = ({ id, type }) => {

switch (type) {

// ...

case 'image':

this.setState({

fullscreenImageId: id,

isInputFocused: false,

});

break;

default:

break;

Core APIs, Part 1 333

}

};

// ...

Now the keyboard should be dismissed when we tap an image to preview it
fullscreen.

Next, let’s connect the location button so we can send messages containing a map
with a pin at our location.

Geolocation

The React Native geolocationAPI is slightly different than other APIs: we can access
it directly from the global navigator object, rather than importing it at the top of the
file.

The geolocation API in React Native is the same as the one found in modern web
browsers. This means better compatibility between libraries and a lower learning
curve if you’re coming from web development. On the web, the navigator object
contains a lot of useful metadata about yourweb browser. In React Native, it’s really
just a container for geolocation and potentially a handful of other browser APIs.
Accessing a global variable feels a bit unusual in React Native, but is necessary to
provide the exact same API on web and mobile.

We’ll use navigator.geolocation.getCurrentPosition to get our current position.
This API takes a callback parameter which is called with an object containing our
coordinates, coords, in latitude and longitude.

There’s currently a bug in Expo/React Native. This method never calls its
callback parameter on Android. We’ll update this chapter as soon as it’s
fixed!

Core APIs, Part 1 334

Let’s try it out. We can get our current position and use it to create a location message
in the MessageList. Add the following to handlePressToolbarLocation in App.js:

1 // ...

2

3 handlePressToolbarLocation = () => {

4 const { messages } = this.state;

5

6 navigator.geolocation.getCurrentPosition((position) => {

7 const { coords: { latitude, longitude } } = position;

8

9 this.setState({

10 messages: [

11 createLocationMessage({

12 latitude,

13 longitude,

14 }),

15 ...messages,

16],

17 });

18 });

19 };

20

21 // ...

Pretty simple!

If you try it out, you may be prompted to give Expo permission to access your
location. Expo is already set up to allow the location permission.

If you’re building an app using react-native-cli, you’ll also need to
modify your Info.plist on iOS and AndroidManifest.xml on Android to
enable location permissions.

Tapping the location button should now add a location message:

Core APIs, Part 1 335

Depending on how we’re using geolocation, there are a few other APIs that might
be useful: - watchPosition(success, error?, options?) and clearWatch(watchID)

can be used to receive notifications when location changes. We can also pass the op-
tions timeout (number in ms), maximumAge (number in ms), and enableHighAccuracy

(bool) for more granular control. - requestAuthorization() can be used to request
access to device location. This can be a better experience than presenting an
alert when a map is shown for the first time. - getCurrentPosition(geo_success,
geo_error?, geo_options?) is the full function signature of the getCurrentPosition
API we use above. Althoughwe didn’t do it in our example, wewould generally want
to handle errors and present them to the user in some way. We might also want to
pass options for more granular control (the same options as watchPosition).

Input Method Editor (IME)

We’ve finished creating themessage list and toolbar. Let’s move on to one of themore
interesting features of our app: the custom input method editor for sending images.

Core APIs, Part 1 336

We’ll build the image grid flexibly so we could easily use it in other apps with just a
few modifications.

Image picker

Let’s populate our image grid with photos from the camera roll. To do this, we’ll need
to access the images saved on the device and display them in an infinitely scrolling
grid. We can do this with a combination of the Core APIs CameraRoll, Dimensions,
and PixelRatio.

Building a grid

Let’s make a new Grid component which we’ll use to display Image components from
the camera roll.

Here we’ll use a FlatList to make our image grid. If you recall from the previous
chapter, the FlatList component is a feature-packed ScrollView that we can use for

Core APIs, Part 1 337

infinite scrolling out-of-the-box. The FlatList can be configured to display multiple
columns, instead of the normal single column, by passing the numColumns prop.

Let’s make a new file Grid.jswithin the components directory. In this, we can create
a Grid component which renders a FlatList. Our Grid will be a wrapper around
FlatList that configures it specifically for our use case: displaying multiple columns
of square-shaped components.

Our Grid will pass along all of its props to FlatList, since it’s mostly acting as a
more specific case of the very general FlatList component. Our Grid component
will handle three props (two of which are also FlatList props):

• renderItem - A function called with each item. Should return a React element.
We want to intercept this function before passing it to FlatList. We’re going
to call it with the same arguments that FlatList would call it with, but we’re
going to add some extra information about the style of the item to render.

• numColumns - The number of columns per row. We’ll use this to calculate item
dimensions. We’ll pass this to FlatList directly.

• itemMargin - The vertical and horizontal spacing between each item in the grid.
This prop doesn’t need to be passed into FlatList.

Here’s a skeleton for the Grid component code:

messaging/components/Grid.js

import { Dimensions, FlatList, PixelRatio, StyleSheet } from 'react-nat\

ive';

import PropTypes from 'prop-types';

import React from 'react';

export default class Grid extends React.Component {

static propTypes = {

renderItem: PropTypes.func.isRequired,

numColumns: PropTypes.number,

itemMargin: PropTypes.number,

};

static defaultProps = {

Core APIs, Part 1 338

numColumns: 4,

itemMargin: StyleSheet.hairlineWidth,

};

renderGridItem = (info) => {

// ... The interesting stuff happens here!

};

render() {

return (

<FlatList {...this.props} renderItem={this.renderGridItem} />

);

}

}

Note that we pass all props into FlatList. We’re building awrapper around FlatList
that adds some extra rendering info to each item, but we’re going to let FlatList do
the hard work of rendering rows of content in an infinitely scrolling list. We’ll focus
on rendering square Image components of equal size in the renderGridItem function.

We’ll need to get the dimensions of the device using the Dimensions API.

messaging/components/Grid.js

renderGridItem = (info) => {

// ...

const { width } = Dimensions.get('window');

// ...

};

At first glance, it might look like we should call Dimensions.get('window') outside
of the render path, so we only have to retrieve it once. However, width can change
sizes depending on device orientation, multitasking mode, etc, so it’s best to do this
within the render path.

Core APIs, Part 1 339

Next, let’s calculate the dimensions of each item we’ll render. Here we’ll want to
use the PixelRatio.roundToNearestPixel API. This API helps us ensure we align
content to physical pixels when we’re dealing with non-integer dimensions.

In React Native, we specify dimensions in terms of logical pixels rather
than physical pixels. There may be multiple physical pixels per logical
pixels in a device with a high pixel density, e.g. retina display. When we
make calculations that can result in non-integer dimensions, we should
use PixelRatio to help us align to the nearest physical pixel - otherwise,
there may be visual inconsistencies (e.g. some elements or margins appear
larger than others).

messaging/components/Grid.js

renderGridItem = (info) => {

// ...

const { numColumns, itemMargin } = this.props;

const { width } = Dimensions.get('window');

const size = PixelRatio.roundToNearestPixel(

(width - itemMargin * (numColumns - 1)) / numColumns,

);

// ...

};

We now have a pixel-aligned size for each item in the grid. Let’s also calculate the
margins between elements. We can use the index of the item, which is passed to us
automatically by the FlatList.

Core APIs, Part 1 340

messaging/components/Grid.js

renderGridItem = (info) => {

const { index } = info;

const { numColumns, itemMargin } = this.props;

const { width } = Dimensions.get('window');

const size = PixelRatio.roundToNearestPixel(

(width - itemMargin * (numColumns - 1)) / numColumns,

);

// We don't want to include a `marginLeft` on the first item of a

// row

const marginLeft = index % numColumns === 0 ? 0 : itemMargin;

// We don't want to include a `marginTop` on the first row of the

// grid

const marginTop = index < numColumns ? 0 : itemMargin;

// ...

};

Great! We’ve done all the calculations necessary to start rendering Image elements
of the appropriate size. Let’s call the renderItem prop with this information.

messaging/components/Grid.js

renderGridItem = (info) => {

const { renderItem, numColumns, itemMargin } = this.props;

// ...

return renderItem({ ...info, size, marginLeft, marginTop });

};

We augment the info passed by FlatList with size, marginLeft, and marginTop, so
that we can render items at the correct size from within the renderItem function.

Core APIs, Part 1 341

On generic vs. specific components

What we just did was a little complicated: we created a Grid component which ac-
cepts a renderItem function prop, thenwe passed a different function, renderGridItem,
into the FlatList.

Our goal here is to take the very powerful and generic FlatList and create a more
specific version called Grid. We want to expose nearly all the customizability of
FlatList (we propagate all the props from Grid into FlatList), while tweaking a
few parts to make rendering in a grid format more straightforward. By keeping the
API as similar as possible to FlatList, our Grid can be used as an almost drop-in
replacement. Additionally, the learning curve for using our Grid is much lower than
a completely custom component, since if we know the API of FlatListwe also know
the API of Grid.

Adding images to the grid

Our grid is ready to go! We wrote the Grid component so that we could add an
infinitely scrolling grid of images for the user to send as messages.

Ultimately we want to fill this grid with photos from the camera roll. But first, let’s
try using it with some placeholder images to test it out.

Create a new file in components called ImageGrid.js. We’ll use our Grid component
by adding the following code:

messaging/components/ImageGrid.js

import { Image, StyleSheet, TouchableOpacity } from 'react-native';

import CameraRoll from 'expo-cameraroll'

import * as Permissions from 'expo-permissions';

import PropTypes from 'prop-types';

import React from 'react';

import Grid from './Grid';

const keyExtractor = ({ uri }) => uri;

Core APIs, Part 1 342

export default class ImageGrid extends React.Component {

static propTypes = {

onPressImage: PropTypes.func,

};

static defaultProps = {

onPressImage: () => {},

};

state = {

images: [

{ uri: 'https://picsum.photos/600/600?image=10' },

{ uri: 'https://picsum.photos/600/600?image=20' },

{ uri: 'https://picsum.photos/600/600?image=30' },

{ uri: 'https://picsum.photos/600/600?image=40' },

],

};

renderItem = ({ item: { uri }, size, marginTop, marginLeft }) => {

const style = {

width: size,

height: size,

marginLeft,

marginTop,

};

return (

<Image source={{ uri }} style={style} />

);

};

render() {

const { images } = this.state;

return (

<Grid

Core APIs, Part 1 343

data={images}

renderItem={this.renderItem}

keyExtractor={keyExtractor}

// ...

/>

);

}

}

const styles = StyleSheet.create({

image: {

flex: 1,

},

});

You can see that we use Grid in almost the same way as we would use a FlatList.
The difference is that renderItem has a few additional values we can use for layout:
size, marginTop, and marginLeft.

Save ImageGrid.js. Let’s render ImageGrid from App.js to see what we have so far.
Update App.js with the following:

messaging/App.js

// ...

import ImageGrid from './components/ImageGrid';

export default class App extends React.Component {

// ...

renderInputMethodEditor = () => (

<View style={styles.inputMethodEditor}>

<ImageGrid />

</View>

);

Core APIs, Part 1 344

// ...

}

// ...

When we save App.js, we should see something similar to this:

On separating components

Notice how by making a separate Grid component, we’ve cleanly separated the grid
rendering logic from the content we render.We could have written the grid rendering
logic, and the image loading from the camera roll in the same ImageGrid component,
but then the component would’ve had two reasonably complex and distinct tasks.

Core APIs, Part 1 345

As a general guideline for React Native, it’s useful to separate complex concerns
(e.g. rendering calculations, data fetching) into separate components, so that our
components remain focused on a single task. This makes them easier understand
when reading them later, and easier to reuse. Our Grid can easily be reused in other
apps with other kinds of content. Our ImageGrid could render images into a FlatList
instead of a Grid with very few changes.

Loading images from the camera roll

Let’s replace the placeholder images we’ve added to state.images with real images
from the camera roll.

We can use CameraRoll.getPhotos(options) to request an array of images from
the device. We can specify the number of images we want to get with the first

option. We can use a cursor to iterate through the list of images by passing an
after option (more on this soon). We also need to specify which assetTypewe want
(Photos, Videos, or All), andwe can optinally specify a groupName to choose a specific

Core APIs, Part 1 346

category of photos on iOS (the default is SavedPhotos). This API is asynchronous and
returns a promise containing the image metadata, along with pagination info.

Since this API is asynchronous, it may take some time for the first images to be
returned. The more images we request, the longer it will take. It’s best to request just
enough images to fill the entire screen: we want the API response as soon as we can,
but we also want the screen to load all at once, rather than piecemeal.

Calling CameraRoll.getPhotos(options) returns a promise, which resolves to an
object containing:

• edges - An array of items, each containing a node object. The node object
contains metadata about the image, such as timestamp and location. The node
object also contains an image object with the filename, width, height, and uri

of the image.
• page_info - An object containing a boolean has_next_page, a string end_-

cursor, and a string before_cursor.

We can pass end_cursor to the after option of CameraRoll.getPhotos(options) in
order to iterate through the list.

If you’re not familiar with using cursors, they’re a common way to iterate
through lists of data stored on servers or in databases. A cursor points to a
specific item in a list. By passing the cursor along with a request for more
items, the server or database will know which items it’s already returned
to you and which it should return next. The details aren’t too relevant for
our uses, but if you’re curious about cursors, you can read more here⁵⁸.

Before we can access the camera roll on Android, we’ll need to request the user’s
permission to do so. We can use the Expo Permissions API to do this. We can await
a call to Permissions.askAsync containing the permission we want access to, and
check the returned object for whether request was granted.

⁵⁸https://en.wikipedia.org/wiki/Cursor_(databases)

https://en.wikipedia.org/wiki/Cursor_(databases)
https://en.wikipedia.org/wiki/Cursor_(databases)

Core APIs, Part 1 347

await Permissions.askAsync(Permissions.CAMERA_ROLL);

if (status !== 'granted') {

// Denied

} else {

// Good to go!

}

More info about permissions is available in the Expo docs⁵⁹.

In componentDidMount, let’s get camera roll permissions, load an initial set of images,
and store the images in state.images.

messaging/components/ImageGrid.js

// ...

export default class ImageGrid extends React.Component {

state = {

images: [],

};

componentDidMount() {

this.getImages();

}

getImages = async () => {

const { status } = await Permissions.askAsync(

Permissions.CAMERA_ROLL,

);

if (status !== 'granted') {

console.log('Camera roll permission denied');

⁵⁹https://docs.expo.io/versions/latest/sdk/permissions.html

https://docs.expo.io/versions/latest/sdk/permissions.html
https://docs.expo.io/versions/latest/sdk/permissions.html

Core APIs, Part 1 348

return;

}

const results = await CameraRoll.getPhotos({

first: 20,

assetType: 'Photos',

});

const { edges } = results;

const loadedImages = edges.map(item => item.node.image);

this.setState({ images: loadedImages });

};

// ...

}

This should give us at most 20 images. If there are fewer than 20 images saved on the
device, then we may see fewer.

Wemake our getImagesmethod async so that we can use awaitwith CameraRoll.getPhotos.

This works well for 20 images, but now we need to load more when the user scrolls
to the bottom of the Grid. We can use the onEndReached function prop of FlatList
(which is also a prop of Grid) to notify us that we need to load more images. This
is trickier than it sounds: the onEndReached function we pass may be called multiple
times before we have finished loading a new set of images. We need to be careful not
to load the same set of images twice. Let’s start by calling getNextImages when we
reach the end of the list:

Core APIs, Part 1 349

messaging/components/ImageGrid.js

// ...

export default class ImageGrid extends React.Component {

// ...

getNextImages = () => {

// ...

};

// ...

render() {

const { images } = this.state;

return (

<Grid

data={images}

renderItem={this.renderItem}

keyExtractor={keyExtractor}

onEndReached={this.getNextImages}

/>

);

}

}

We can use the page_info object in the response of CameraRoll.getPhotos to
determine if we need to load another page. We’ll use:

• has_next_page - Are there more images to load?
• end_cursor - The cursor we can use to load more images after the current set
we’ve just retrieved.

Let’s keep track of the internal state of the pagination with two member variables,
this.loading and this.cursor. We don’t need to put these in this.state since they

Core APIs, Part 1 350

don’t directly affect component rendering. We can also update them synchronously
which will make our implementation simpler. Anytime we use this.setState we
have to keep in mind that it occurs asynchronously.

messaging/components/ImageGrid.js

// ...

export default class ImageGrid extends React.Component {

loading = false;

cursor = null;

// ...

getNextImages = () => {

if (!this.cursor) return;

this.getImages(this.cursor);

};

getImages = async (after) => {

if (this.loading) return;

this.loading = true;

const results = await CameraRoll.getPhotos({

first: 20,

after,

assetType: 'Photos',

});

const {

edges,

page_info: { has_next_page, end_cursor },

} = results;

const loadedImages = edges.map(item => item.node.image);

Core APIs, Part 1 351

this.setState(

{

images: this.state.images.concat(loadedImages),

},

() => {

this.loading = false;

this.cursor = has_next_page ? end_cursor : null;

},

);

};

}

By keeping track of loading, we can be certain that we’ll only ever load one set
of images at a time. We set this.loading = true before making the asynchronous
call to getPhotos, and we wait till the asynchronous call to this.setState() has
completed before setting this.loading = false.

The second parameter of this.setState is a completion callback. We can use this
to avoid race conditions between the time we call this.setState and the time
this.state is actually updated. If we didn’t use the completion callback and instead
set this.loading = false after calling this.setState, we would potentially access
this.state.images before it had been updated, thus one set of the images we loaded
would fail to be added to the list.

We abort getNextImages if this.cursor doesn’t have a value. This stops us from
loading the initial set of images again once we reach the end of the camera roll. If
we preferred, we could instead record a boolean this.hasNextPage to help us track
when we’ve reached the end.

The last thing we’ll do in this file is call the onPressImage prop whenever we tap an
image. We’ll pass the uri of the image so that we can use it within messages.

We’ll wrap the Image in a TouchableOpacity in order to handle press events. Update
renderItem with the following:

Core APIs, Part 1 352

messaging/components/ImageGrid.js

// ...

renderItem = ({ item: { uri }, size, marginTop, marginLeft }) => {

const { onPressImage } = this.props;

const style = {

width: size,

height: size,

marginLeft,

marginTop,

};

return (

<TouchableOpacity

key={uri}

activeOpacity={0.75}

onPress={() => onPressImage(uri)}

style={style}

>

<Image source={{ uri }} style={styles.image} />

</TouchableOpacity>

);

};

// ...

Save ImageGrid.js and let’s start using it to add messages to the message list!

Sending images from ImageGrid

We can now load images from the camera roll and display them in a pixel-perfect
grid. When we tap an image, let’s add a new image message to the list of messages
in state using our createImageMessage utility function.

We’ll use handlePressImage to add a new image to the message list:

Core APIs, Part 1 353

messaging/App.js

// ...

export default class App extends React.Component {

// ...

handlePressImage = (uri) => {

const { messages } = this.state;

this.setState({

messages: [createImageMessage(uri), ...messages],

});

};

renderInputMethodEditor = () => (

<View style={styles.inputMethodEditor}>

<ImageGrid onPressImage={this.handlePressImage} />

</View>

);

// ...

}

Great!We can now tap images and they’ll appear in the MessageListwewrote earlier.
Here’s what it should look like:

Core APIs, Part 1 354

What we’ve built

At this point, we have the bulk of the UI components written. In order to access device
information, we’ve used a variety of APIs including Alert, CameraRoll, Dimensions,
Geolocation, NetInfo,PixelRatio, and StatusBar.

Using React Native APIs tends to follow a pattern:

1. Figure out which API we need to call.
2. Figure out which lifecycle/helper method is the most appropriate place to call

it.
3. Call the API (either synchronously or asynchronously).
4. Store the results in component state.
5. Re-render the UI based on the new state.

We can use this approach with nearly any API. We’ll continue covering other APIs
in the second part of this chapter, and in the rest of the book.

Core APIs, Part 2
In the first part of this section, we covered a variety of React Native APIs for accessing
device information. In this part, we’ll focus on one fundamental feature of mobile
devices: the keyboard.

This is a code checkpoint. If you haven’t been coding along with us but
would like to start now, we’ve included a snapshot of our current progress
in the sample code for this book.

If you haven’t created a project yet, you’ll need to do so with:

$ expo init messaging --template blank@sdk-36 --yarn

Then, copy the contents of the directory messaging/1 from the sample code
into your new messaging project directory.

The keyboard

Keyboard handling in React Native can be very complex. We’re going to learn how to
manage the complexity, but it’s a challenging problem with a lot of nuanced details.

Our UI is currently a bit flawed: on iOS, when we focus the message input field, the
keyboard opens up and covers the toolbar. We have no way of switching between
the image picker and the keyboard. We’ll focus on fixing these issues.

We’re about to embark on a deep dive into keyboard handling. We’ll cover
some extremely useful APIs and patterns – however, you shouldn’t feel
like you have to complete the entire chapter now. Feel free to stop here
and return again when you’re actively building a React Native app that
involves the keyboard.

Core APIs, Part 2 356

Why it’s difficult

Keyboard handling can be challenging for many reasons:

• The keyboard is enabled, rendered, and animated natively, so we have much
less control over its behavior than if it were a component (where we control the
lifecycle).

• We have to handle a variety of asynchronous events when the keyboard is
shown, hidden, or resized, and update our UI accordingly. These events are
somewhat different on iOS and Android, and even slightly different in the
simulator compared to a real device.

• The keyboard works differently on iOS and Android at a fundamental level.
On iOS, the keyboard appears on top of the existing UI; the existing UI
doesn’t resize to avoid the keyboard. On Android, the keyboard resizes the UI
above it; the existing UI will shrink to fit in the available space. We generally
want interactions to feel similar on both platforms, despite this fundamental
difference.

• Keyboards interact specially with certain native elements e.g. ScrollView. On
iOS, dragging downward on a ScrollView can dismiss the keyboard at the same
rate of the pan gesture.

• Keyboards are user-customizable on both platforms, meaning there’s an almost
unlimited number of shapes and sizes our UI has to handle.

In this app, we’ll attempt to achieve a native-quality messaging experience. Ulti-
mately though, there will be a few aspects that don’t quite feel native. It’s extremely
difficult to get an app with complex keyboard interactions to feel perfect without
dropping down to the native level. If you can’t achieve the right experience in React
Native, consider writing a nativemodule for the screen that interacts heavily with the
keyboard. This is part of the beauty of React Native – you can start with a JavaScript
version in your initial implementation of a screen or feature, then seamlessly swap it
out for a native implementation when you’re certain it’s worth the time and effort.

If you’re lucky, you’ll be able to find an existing open source native
component that does exactly that!

Core APIs, Part 2 357

KeyboardAvoidingView

In the first chapter, we demonstrated how to use the KeyboardAvoidingView com-
ponent to move the UI of the app out from under the keyboard. This component is
great for simple use cases, e.g. focusing the UI on an input field in a form.

When we need more precise control, it’s often better to write something custom.
That’s what we’ll do here, since we need to coordinate the keyboard with our custom
image input method.

Our goal here is for our image picker to have the same height as the native keyboard,
in essence acting as a custom keyboard created by our app. We’ll want to smoothly
animate the transition between these two input methods.

For a demo of the desired behavior, you can try playing around with the completed
app (it’s the same app as the previous section):

• On Android, you can scan this QR code from within the Expo app:

• On iOS, you can build the app and preview it on the iOS simulator or send the
link of the project URL to your device like we’ve done in previous chapters.

On managing complexity

Since this problem is fairly complicated, we’re going to break it down into 3 parts,
each with its own component:

Core APIs, Part 2 358

• MeasureLayout - This component will measure the available space for our
messaging UI

• KeyboardState - This component will keep track of the keyboard’s visibility,
height, etc

• MessagingContainer - This component will displaying the correct IME (text,
images) at the correct size

We’ll connect them so that MeasureLayout renders KeyboardState, which in turn
renders MessagingContainer.

We could build one massive component that handles everything, but this would get
very complicated and be difficult to modify or reuse elsewhere.

Keyboard

We’ll need to measure the available space on the screen and the keyboard height
ourselves, and adjust our UI accordingly. We’ll keep track of whether the keyboard is
currently transitioning. And we’ll animate our UI to transition between the different
keyboard states.

To do this, we’ll use the Keyboard API. The Keyboard API is the lower-level API that
KeyboardAvoidingView uses under the hood.

On iOS, the keyboard uses an animation with a special easing curve that’s hard to
replicate in JavaScript, so we’ll hook into the native animation directly using the
LayoutAnimation API. LayoutAnimation is one of the two main ways to animate our
UI (the other being Animated). We’ll cover animation more in a later chapter.

Measuring the available space

Let’s start by measuring the space we have to work with. We want to measure the
space that our MessageList can use, so we’ll measure from below the status bar
(anything above our MessageList) to the bottom of the screen. We need to do this
to get a numeric value for height, so we can transition between the height when the
keyboard isn’t visible to the height when the keyboard is visible. Since the keyboard
doesn’t actually take up any space in our UI, we can’t rely on flex: 1 to take care
of this for us.

Core APIs, Part 2 359

Measuring in React Native is always asynchronous. In other words, the first time we
render our UI, we have no general-purpose way of knowing the height. If the content
above our MessageList has a fixed height, we can calculate the initial height by
taking Dimensions.get('window').width and subtracting the height of the content
above our MessageList – however, this is not very flexible. Instead, let’s create a
container View with a flexible height flex: 1 and measure it on first render. After
that, we’ll always have a numeric value for height.

We can measure this Viewwith the onLayout prop. By passing a callback to onLayout,
we can get the layout of the View. This layout contains values for x, y, width, and
height.

messaging/components/MeasureLayout.js

1 import Constants from 'expo-constants';

2 import { Platform, StyleSheet, View } from 'react-native';

3 import PropTypes from 'prop-types';

4 import React from 'react';

5

6 export default class MeasureLayout extends React.Component {

7 static propTypes = {

8 children: PropTypes.func.isRequired,

9 };

10

11 state = {

12 layout: null,

13 };

14

15 handleLayout = event => {

16 const { nativeEvent: { layout } } = event;

17

18 this.setState({

19 layout: {

20 ...layout,

21 y:

22 layout.y +

23 (Platform.OS === 'android' ? Constants.statusBarHeight : 0),

24 },

Core APIs, Part 2 360

25 });

26 };

27

28 render() {

29 const { children } = this.props;

30 const { layout } = this.state;

31

32 // Measure the available space with a placeholder view set to

33 // flex 1

34 if (!layout) {

35 return (

36 <View onLayout={this.handleLayout} style={styles.container} />

37);

38 }

39

40 return children(layout);

41 }

42 }

43

44 const styles = StyleSheet.create({

45 container: {

46 flex: 1,

47 },

48 });

Here we render a placeholder View with an onLayout prop. When called, we update
state with the new layout.

Most React Native components accept an onLayout function prop. This is
conceptually similar to a React lifecycle method: the function we pass is
called every time the component updates its dimensions. We need to be
careful when calling setState within this function, since setState may
cause the component to re-render, in which case onLayout will get called
again… and now we’re stuck in an infinite loop!

We have to compensate for the solid color status bar we use on Android by adjusting

Core APIs, Part 2 361

the y value, since the status bar height isn’t included in the layout data. We can do
this by merging the existing properties of layout, ...layout, and an updated y value
that includes the status bar height.

We use a new pattern here for propagating the layout into the children of this
component: we require the children prop to be a function. When we use our
MeasureLayout component, it will look something like this:

<MeasureLayout>

{layout => <View ... />}

</MeasureLayout>

This pattern is similar to having a renderX prop, where X indicates what will be
rendered, e.g. renderMessages. However, using children makes the hierarchy of
the component tree more clear. Using the children prop implies that these children
components are the main thing the parent renders. As an analogy, this pattern is
similar to choosing between export default and export X. If there’s only one
variable to export from a file, it’s generally more clear to go with export default.
If there’s a variable with the same name as the file, or a variable that seems like the
primary purpose of the file, youwould also likely export it with export default and
export other variables with export X. Similarly, you should consider using children
if this prop is the “default” or “primary” thing a component renders. Ultimately this
is an API style preference. Even if you choose not to use it, it’s useful to be aware
of the pattern since you may encounter it when using open source libraries.

We’re now be able to get a precise height which we can use to resize our UI when
the keyboard appears and disappears.

Keyboard events

We have the initial height for our messaging UI, but we need to update the height
when the keyboard appears and disappears. The Keyboard object emits events to let
us know when it appears and disappears. These events contain layout information,
and on iOS, information about the animation that will/did occur.

Core APIs, Part 2 362

KeyboardState

Let’s create a new component called KeyboardState to encapsulate the keyboard
event handling logic. For this component, we’re going to use the same pattern as
we did for MeasureLayout: we’ll take a children function prop and call it with
information about the keyboard layout.

We can start by figuring out the propTypes for this component. We knowwe’re going
to have a children function prop. We’re also going to consume the layout from the
MeasureLayout component, and use it in our keyboard height calculations.

messaging/components/KeyboardState.js

import { Keyboard, Platform } from "react-native";

import PropTypes from 'prop-types';

import React from 'react';

export default class KeyboardState extends React.Component {

static propTypes = {

layout: PropTypes.shape({

x: PropTypes.number.isRequired,

y: PropTypes.number.isRequired,

width: PropTypes.number.isRequired,

height: PropTypes.number.isRequired,

}).isRequired,

children: PropTypes.func.isRequired,

};

// ...

}

Now let’s think about the state. We want to keep track of 6 different values, which
we’ll pass into the children of this component:

• contentHeight: The height available for our messaging content.
• keyboardHeight: The height of the keyboard. We keep track of this so we set
our image picker to the same size as the keyboard.

Core APIs, Part 2 363

• keyboardVisible: Is the keyboard fully visible or fully hidden?
• keyboardWillShow: Is the keyboard animating into view currently? This is only
relevant on iOS.

• keyboardWillHide: Is the keyboard animating out of view currently? This is
only relevant on iOS, and we’ll only use it for fixing visual issues on the iPhone
X.

• keyboardAnimationDuration: When we animate our UI to avoid the keyboard,
we’ll want to use the same animation duration as the keyboard. Let’s initialize
this with the value 250 (in milliseconds) as an approximation.

messaging/components/KeyboardState.js

// ...

const INITIAL_ANIMATION_DURATION = 250;

export default class KeyboardState extends React.Component {

// ...

constructor(props) {

super(props);

const { layout: { height } } = props;

this.state = {

contentHeight: height,

keyboardHeight: 0,

keyboardVisible: false,

keyboardWillShow: false,

keyboardWillHide: false,

keyboardAnimationDuration: INITIAL_ANIMATION_DURATION,

};

}

// ...

}

Core APIs, Part 2 364

Now that we’ve determined which properties to keep track of, let’s update them
based on keyboard events.

There are 4 Keyboard events we should listen for:

• keyboardWillShow (iOS only) - The keyboard is going to appear
• keyboardWillHide (iOS only) - The keyboard is going to disappear
• keyboardDidShow - The keyboard is now fully visible
• keyboardDidHide - The keyboard is now fully hidden

In componentDidMount we can add listeners to each keyboard event;

And in componentWillUnmount we can remove them:

1 // ...

2

3 componentDidMount() {

4 if (Platform.OS === 'ios') {

5 this.subscriptions = [

6 Keyboard.addListener(

7 'keyboardWillShow',

8 this.keyboardWillShow,

9),

10 Keyboard.addListener(

11 'keyboardWillHide',

12 this.keyboardWillHide,

13),

14 Keyboard.addListener('keyboardDidShow', this.keyboardDidShow),

15 Keyboard.addListener('keyboardDidHide', this.keyboardDidHide),

16];

17 } else {

18 this.subscriptions = [

19 Keyboard.addListener('keyboardDidHide', this.keyboardDidHide),

20 Keyboard.addListener('keyboardDidShow', this.keyboardDidShow),

21];

22 }

Core APIs, Part 2 365

23 }

24

25 componentWillUnmount() {

26 this.subscriptions.forEach(subscription => subscription.remove());

27 }

28

29 // ...

We’ll add the listeners slightly differently for each platform: on Android, we don’t
get events for keyboardWillHide or keyboardWillShow.

Storing subscription handles in an array is a common practice in React Native. We
don’t know exactly how many subscriptions we’ll have until runtime, since it’s
different on each platform, so removing all subscriptions from an array is easier than
storing and removing a reference to each listener callback.

Let’s use these events to update keyboardVisible, keyboardWillShow, and keyboardWillHide
in our state:

messaging/components/KeyboardState.js

// ...

keyboardWillShow = (event) => {

this.setState({ keyboardWillShow: true });

// ...

};

keyboardDidShow = () => {

this.setState({

keyboardWillShow: false,

keyboardVisible: true,

});

// ...

};

Core APIs, Part 2 366

keyboardWillHide = (event) => {

this.setState({ keyboardWillHide: true });

// ...

};

keyboardDidHide = () => {

this.setState({

keyboardWillHide: false,

keyboardVisible: false

});

};

// ...

The listeners keyboardWillShow, keyboardDidShow, and keyboardWillHide will each
be called with an event object, which we can use to measure the contentHeight and
keyboardHeight. Let’s do that now, using this.measure(event) as a placeholder for
the function which will perform measurements.

messaging/components/KeyboardState.js

// ...

keyboardWillShow = (event) => {

this.setState({ keyboardWillShow: true });

this.measure(event);

};

keyboardDidShow = (event) => {

this.setState({

keyboardWillShow: false,

keyboardVisible: true,

});

this.measure(event);

};

Core APIs, Part 2 367

keyboardWillHide = (event) => {

this.setState({ keyboardWillHide: true });

this.measure(event);

};

// ...

For iOS it would be sufficient to calculate measurements in the keyboardWill*

events, since the keyboardDid* events should receive the same event parameter.
However, since Android only supports the keyboardDid* events, we also need to use
keyboardDidShow. Calculating measurements in keyboardDidShow on iOS shouldn’t
affect the app’s behavior, but we could do this conditionally by checking Platform.OS
=== 'android' if we preferred.

We can use these events to keep track of the keyboard’s current state. Each event

object will have the following properties:

• duration - Duration of the keyboard animation. In practice, this is typically
constant across all keyboard animations. This property only exists on iOS, so
we’ll use a constant to approximate it on Android.

• easing - Easing curve used by the keyboard animation. This will be the special
easing curve called 'keyboard', which we can use to sync our own animations
with the keyboard’s. This property only exists on iOS, since there isn’t a specific
keyboard animation on Android. We’ll use 'easeInEaseOut' as a pleasant-
looking default to approximate the keyboard animation on Android.

• startCoordinates, endCoordinates - An object containing keys height, width,
screenX, and screenY. These refer to the start and end coordinates of the
keyboard. Normally height, width, and screenX will stay the same. We can
use height to determine the height of the keyboard. The screenY value refers
to the top of the keyboard, which we can use to determine the remaining height
available to render content.

To calculate the contentHeight, we can take the screenY (top coordinate of the
keyboard) and subtract layout.y (top coordinate of our messaging component).

Core APIs, Part 2 368

1 measure = (event) => {

2 const { layout } = this.props;

3

4 const {

5 endCoordinates: { height, screenY },

6 duration,

7 } = event;

8

9 this.setState({

10 contentHeight: screenY - layout.y,

11 keyboardHeight: height,

12 keyboardAnimationDuration: duration || INITIAL_ANIMATION_DURATION,

13 });

14 };

15

16 // ...

Remember, y coordinates lower down on the screen are larger than those
higher on the screen, so this calculation will resulting in a positive value.

Note that if a hardware keyboard is connected, the height of the keyboard will be 0
– we’ll have to handle this specially later.

Let’s propagate all of these values into the children of this component. We’ll also
propagate the height of the entire component as containerHeight.

messaging/components/KeyboardState.js

// ...

render() {

const { children, layout } = this.props;

const {

contentHeight,

keyboardHeight,

keyboardVisible,

keyboardWillShow,

Core APIs, Part 2 369

keyboardWillHide,

keyboardAnimationDuration,

} = this.state;

return children({

containerHeight: layout.height,

contentHeight,

keyboardHeight,

keyboardVisible,

keyboardWillShow,

keyboardWillHide,

keyboardAnimationDuration,

});

}

// ...

When we use this component, it’ll look roughly like this: we’ll first wrap it in our
MeasureLayout component, and pass the layout in as a prop. We can then render our
content using the keyboardInfo object.

<MeasureLayout>

{layout => (

<KeyboardState layout={layout}>

{keyboardInfo => /* ... */}

</KeyboardState>

)}

</MeasureLayout>

Alright, we’re almost there! We have MeasureLayout and KeyboardState. The last
component we need is MessagingContainer to render the content using the sizes
we’ve calculated.

Core APIs, Part 2 370

MessagingContainer

Let’s create a new component MessagingContainer to render the correct Input
Method Editor (IME) at the correct size.

Once again, let’s figure out the propTypes first. This component is going to have a
lot of props, since it’s consuming data from the previous components we wrote, in
addition to more props which we’ll pass in from App.

The main job of this component is to display the correct IME at any given time. Let’s
define constants for each potential state:

• NONE - Don’t show any IME.
• KEYBOARD - The text input is focused, so the keyboard should be visible.
• CUSTOM - Show our custom IME. In this case, we’ll show our image picker, but
we could show other kinds of input here if we wanted to.

Let’s create an object to hold these. We’ll also export it so that other components can
easily use the correct string values.

messaging/components/MessagingContainer.js

import {

BackHandler,

LayoutAnimation,

Platform,

UIManager,

View,

} from 'react-native';

import PropTypes from 'prop-types';

import React from 'react';

export const INPUT_METHOD = {

NONE: 'NONE',

KEYBOARD: 'KEYBOARD',

CUSTOM: 'CUSTOM',

};

Core APIs, Part 2 371

// ...

Now for the propTypes. We’ll begin by declaring each of the values that will be passed
from KeyboardState. We’ll define inputMethod and onChangeInputMethod to handle
switching between IMEs and notifying the parent of changes. We’ll also support
rendering content in both the keyboard area with renderInputMethodEditor and the
main content area with children. In this case, children should be a normal React
element rather than a function like in the two components we wrote previously.

messaging/components/MessagingContainer.js

// ...

export default class MessagingContainer extends React.Component {

static propTypes = {

// From `KeyboardState`

containerHeight: PropTypes.number.isRequired,

contentHeight: PropTypes.number.isRequired,

keyboardHeight: PropTypes.number.isRequired,

keyboardVisible: PropTypes.bool.isRequired,

keyboardWillShow: PropTypes.bool.isRequired,

keyboardWillHide: PropTypes.bool.isRequired,

keyboardAnimationDuration: PropTypes.number.isRequired,

// Managing the IME type

inputMethod: PropTypes.oneOf(Object.values(INPUT_METHOD))

.isRequired,

onChangeInputMethod: PropTypes.func,

// Rendering content

children: PropTypes.node,

renderInputMethodEditor: PropTypes.func.isRequired,

};

static defaultProps = {

children: null,

Core APIs, Part 2 372

onChangeInputMethod: () => {},

};

// ...

}

Now let’s use componentDidUpdate to handle switching the inputMethod. When
the keyboard transitions from hidden to visible, we want to set the inputMethod

to INPUT_METHOD.KEYBOARD. When the keyboard transitions from visible to hidden,
we want to set the inputMethod to INPUT_METHOD.NONE… unless we’re currently
displaying the image picker (the keyboard should always be hidden when we display
the image picker, so we can ignore this transition).

messaging/components/MessagingContainer.js

// ...

componentDidUpdate(prevProps) {

const { onChangeInputMethod } = this.props;

if (this.props.keyboardVisible && !prevProps.keyboardVisible) {

// Keyboard shown

onChangeInputMethod(INPUT_METHOD.KEYBOARD);

} else if (

// Keyboard hidden

!this.props.keyboardVisible &&

prevProps.keyboardVisible &&

this.props.inputMethod !== INPUT_METHOD.CUSTOM

) {

onChangeInputMethod(INPUT_METHOD.NONE);

}

// ... more to come!

}

Core APIs, Part 2 373

// ...

Since inputMethodwill be stored in the state of the parent, we’ll call onChangeInputMethod
and let the parent pass this prop back down.We could store inputMethod in the state
of MessagingContainer, but since the parent needs to access this value, it’s best that
the parent stores it.

LayoutAnimation

We’re going to use LayoutAnimation to handle automatically transitioning between
the various states of this component. LayoutAnimation is still considered experi-
mental, and it’s more common to use the other animated API, Animated. However,
LayoutAnimation is the only way we can match the exact animation of the keyboard.
It’s used internally by the built-in KeyboardAvoidingView component, so it’s safe for
us to use despite being considered experimental.

Currently LayoutAnimation is disabled by default on Android, so we need to enable
it by calling UIManager.setLayoutAnimationEnabledExperimental(true). We can
enable it anywhere in the app, but let’s do it at the top of MessagingContainer.js,
since that’s the file we use it in:

messaging/components/MessagingContainer.js

if (

Platform.OS === 'android' &&

UIManager.setLayoutAnimationEnabledExperimental

) {

UIManager.setLayoutAnimationEnabledExperimental(true);

}

The UIManager object contains a variety of APIs for getting access to native
UI elements for measuring, but we won’t use it for anything else here.

LayoutAnimation automatically handles animating elements that should change size
or appear/disappear between calls to render. We call LayoutAnimation.create to

Core APIs, Part 2 374

define an animation configuration, and then LayoutAnimation.configureNext to
enqueue the animation to run the next time render is called.

The LayoutAnimation.create API takes three parameters:

• duration - The duration of the animation
• easing - The curve of the animation.We choose from a predefined set of curves:
spring, linear, easeInEaseOut, easeIn, easeOut, keyboard. The keyboard curve
is the key to matching the keyboard’s animation curve – although it only exists
on iOS.

• creationProp - The style to animate when a new element is added: opacity or
scaleXY.

In our case, wewant to call this every time the component re-renders, so componentDidUpdate
is the best place.

messaging/components/MessagingContainer.js

// ...

componentDidUpdate(prevProps) {

// ... from before!

const { keyboardAnimationDuration } = this.props;

const animation = LayoutAnimation.create(

keyboardAnimationDuration,

Platform.OS === 'android'

? LayoutAnimation.Types.easeInEaseOut

: LayoutAnimation.Types.keyboard,

LayoutAnimation.Properties.opacity,

);

LayoutAnimation.configureNext(animation);

}

// ...

Core APIs, Part 2 375

LayoutAnimation applies to the entire component hierarchy, not just the component
we call it from, so this will actually animate every component in our app. It may be
a better idea to selectively choose when to animate based on the exact props which
have changed, but for simplicity, let’s assume we always want to animate.

Handling the back button

We should add one last bit of logic in MessagingContainer.js to handle the hardware
back button on Android. When the CUSTOM IME is active, we want the back button
to dismiss the IME, just like it would for the device keyboard. We’ll use BackHandler
for this. When the back button is pressed, if the CUSTOM IME is active, we’ll call
onChangeInputMethod(INPUT_METHOD.NONE) to notify the parent.

messaging/components/MessagingContainer.js

// ...

componentDidMount() {

this.subscription = BackHandler.addEventListener(

'hardwareBackPress',

() => {

const { onChangeInputMethod, inputMethod } = this.props;

if (inputMethod === INPUT_METHOD.CUSTOM) {

onChangeInputMethod(INPUT_METHOD.NONE);

return true;

}

return false;

},

);

}

componentWillUnmount() {

this.subscription.remove();

}

Core APIs, Part 2 376

// ...

Rendering the MessagingContainer

Now let’s render this thing! We’ll render an outer View which contains the message
list and the toolbar (via children), and an inner Viewwhich renders the image picker
(via renderInputMethodEditor).

The conditional logic is pretty complex, so let’s take a look at it in-line with the code.

messaging/components/MessagingContainer.js

// ...

render() {

const {

children,

renderInputMethodEditor,

inputMethod,

containerHeight,

contentHeight,

keyboardHeight,

keyboardWillShow,

keyboardWillHide,

} = this.props;

// For our outer `View`, we want to choose between rendering at

// full height (`containerHeight`) or only the height above the

// keyboard (`contentHeight`). If the keyboard is currently

// appearing (`keyboardWillShow` is `true`) or if it's fully

// visible (`inputMethod === INPUT_METHOD.KEYBOARD`), we should

// use `contentHeight`.

const useContentHeight =

keyboardWillShow || inputMethod === INPUT_METHOD.KEYBOARD;

Core APIs, Part 2 377

const containerStyle = {

height: useContentHeight ? contentHeight : containerHeight,

};

// We want to render our custom input when the user has pressed

// the camera button (`inputMethod === INPUT_METHOD.CUSTOM`), so

// long as the keyboard isn't currently appearing (which would

// mean the input field has received focus, but we haven't updated

// the `inputMethod` yet).

const showCustomInput =

inputMethod === INPUT_METHOD.CUSTOM && !keyboardWillShow;

// If `keyboardHeight` is `0`, this means a hardware keyboard is

// connected to the device. We still want to show our custom image

// picker when a hardware keyboard is connected, so let's set

// `keyboardHeight` to `250` in this case.

const inputStyle = {

height: showCustomInput ? keyboardHeight || 250 : 0,

};

return (

<View style={containerStyle}>

{children}

<View style={inputStyle}>{renderInputMethodEditor()}</View>

</View>

);

}

// ...

In order for the toolbar to sit above the home indicator on the iPhone X, we’ll need
to adjust the space below the toolbar as the keyboard transitions up and down.

Core APIs, Part 2 378

Supporting the iPhone X

You may skip this section if you’re not testing with an iPhone X.

In the “Core Components” chapter, we used the SafeAreaView to support the iPhone
X. This won’t work here, since we want to animate the space below the toolbar (to
avoid a jerk when the space changes).

We’ll install the npm library react-native-iphone-x-helper⁶⁰ to help us determine
if the device is an iPhone X.

In your terminal, install the library with:

expo install react-native-iphone-x-helper@1.2.1

React Native doesn’t currently provide a way to determine if the device is
an iPhone X. This library simply checks the device’s dimensions. Hopefully
in the future something better will be provided out-of-the-box for accessing
the safe area insets directly.

After this finishes, import the isIphoneX utility function at the top of the file:

messaging/components/MessagingContainer.js

import { isIphoneX } from 'react-native-iphone-x-helper';

Now we can update the render method above to include extra space below the
toolbar:

⁶⁰https://www.npmjs.com/package/react-native-iphone-x-helper

https://www.npmjs.com/package/react-native-iphone-x-helper
https://www.npmjs.com/package/react-native-iphone-x-helper

Core APIs, Part 2 379

messaging/components/MessagingContainer.js
// ...

render() {

// ...

// The keyboard is hidden and not transitioning up

const keyboardIsHidden =

inputMethod === INPUT_METHOD.NONE && !keyboardWillShow;

// The keyboard is visible and transitioning down

const keyboardIsHiding =

inputMethod === INPUT_METHOD.KEYBOARD && keyboardWillHide;

const inputStyle = {

height: showCustomInput ? keyboardHeight || 250 : 0,

// Show extra space if the device is an iPhone X the keyboard is

// not visible

marginTop:

isIphoneX() && (keyboardIsHidden || keyboardIsHiding)

? 24

: 0,

};

// ...

}

// ...

Whew, we made it. Save MessagingContainer.js. Now we just need to render
MessagingContainer from App.

Rendering MessagingContainer in App

Head back to App.js and import the components we’ve just created:

Core APIs, Part 2 380

messaging/App.js

// ...

import KeyboardState from './components/KeyboardState';

import MeasureLayout from './components/MeasureLayout';

import MessagingContainer, {

INPUT_METHOD,

} from './components/MessagingContainer';

// ...

Let’s include the inputMethod in the state of App, and handle changes to it.

messaging/App.js

// ...

export default class App extends React.Component {

state = {

// ...

inputMethod: INPUT_METHOD.NONE,

};

// ...

handleChangeInputMethod = (inputMethod) => {

this.setState({ inputMethod });

};

handlePressToolbarCamera = () => {

this.setState({

isInputFocused: false,

inputMethod: INPUT_METHOD.CUSTOM,

});

};

Core APIs, Part 2 381

// ...

}

// ...

Lastly, let’s use MeasureLayout, KeyboardState, and MessagingContainer to render
the UI components we’ve already written.

We’ll rearrange:

• this.renderMessageList,
• this.renderToolbar, and
• this.renderInputMethodEditor

so that they render within MessagingContainer.

We can update the render method of App to look like this:

// ...

render() {

const { inputMethod } = this.state;

return (

<View style={styles.container}>

<Status />

<MeasureLayout>

{layout => (

<KeyboardState layout={layout}>

{keyboardInfo => (

<MessagingContainer

{...keyboardInfo}

inputMethod={inputMethod}

onChangeInputMethod={this.handleChangeInputMethod}

renderInputMethodEditor={

Core APIs, Part 2 382

this.renderInputMethodEditor

}

>

{this.renderMessageList()}

{this.renderToolbar()}

</MessagingContainer>

)}

</KeyboardState>

)}

</MeasureLayout>

{this.renderFullscreenImage()}

</View>

);

}

// ...

Using the children function prop pattern, we can pretty clearly visualize the flow
of data downward into MessagingContainer.

Note that since keyboardInfo contains many properties, it’s easiest to pass them all
into MessagingContainer at once with the object spread syntax ...keyboardInfo. If
we prefer, we could also assign each property individually, e.g.

keyboardHeight={keyboardInfo.keyboardHeight}.

Save App.js and test it out! You should see the same components as before, but now
they animate smoothly to avoid the keyboard as it appears and disappears.

In the default state, our app should look like this:

Core APIs, Part 2 383

Tapping the input field should pop open the keyboard, and smoothly transition the
rest of the UI:

Core APIs, Part 2 384

Tapping the camera icon should transition to the image picker:

Core APIs, Part 2 385

We’re Done!

We’ve built a messaging app UI complete with text messages, images, and maps. We
notify the user of connectivity issues.We display a pixel-perfect infinite scrolling grid
of photos. We smoothly animate the UI as newmessages are added and removed (try
it if you haven’t! the LayoutAnimation takes care of this automatically). We handle
the keyboard gracefully on both platforms.

Navigation
In the “Core Components” chapter, we explored how different parts of the app (the
image feed and user comments) can be represented as separate screens - components
that take up the entire device screen. When building screens, handling how the user
navigates between them is a primary concern. Navigation is a major piece of any
mobile application with multiple screens. With a navigation system in place, a user
can access any part of an application. It also allows us to structure and separate how
data is handled in the app.

Handling navigation in a mobile application is fundamentally different from a
website. For a website, the state of a user’s location is usually kept in the browser’s
URL. Although the browser maintains a history of pages visited in order to allow
the user to move back and forth, the browser only stores page URLs and is otherwise
stateless. On mobile, the entire history stack is maintained and can be accessed.

On mobile, we have more control and flexibility over history management. We can
keep a history stack that includes details of each route including parameters and part
of the application state.

Further, mobile navigation presents its own set of challenges. One of the biggest is
the reduced real estate of the user’s device screen compared to a desktop or laptop
computer. We need to make sure there are easily visible and identifiable navigation
components that will allow the user to move to another part of the application when
pressed. Including a complex navigation flow comes with the cost of a larger number
of navigation components (such as menu options). For this reason, most mobile apps
tend to have a small and focused number of screens that a user can easily navigate
to and understand.

Navigation in React Native

This section will explore the landscape of navigation in React Native in
some detail. If you would like to jump straight to building our sample
application, feel free to skip this section and return to it later.

Navigation 387

One of the primary navigation patterns in a mobile app is a stack-based pattern. In
this pattern, only one screen can be seen by the user at any given time. Navigating
involves pushing the new screen onto the navigation stack. We’ll explore stack-based
navigation in more detail later in the chapter. For now, it is important to realize that
this pattern, among others, uses different native components for iOS and Android.
For example, building a stack-based navigation flow between screens can be done
using UINavigationController⁶¹ for iOS and connecting Activities⁶² for Android.

There are two primary approaches to navigation in React. We can either include
actual native iOS/Android navigational elements or use JavaScript to create the
required animations and components that we need.

Native navigation

The first way we can add navigation is to use native iOS/Android navigational
components.

In an iOS application, views are used to build the UI and display content to the user. A
view controller (or the UIViewController class) is used to control a set of views and
allows us to connect our UI with our application data. By including multiple view
controllers in our app, we can build different screens as well as transition between
them.

A navigation controller (UINavigationController) simplifies the process of navi-
gating between screens by allowing us to pass in a stack of UIViewControllers. It
will take care of including a header navigation bar at the top of our device with a
back button that allows us to pop the current view controller off of the current stack.
With this, it maintains the hierarchy of all the screens within the stack.

⁶¹https://developer.apple.com/documentation/uikit/uinavigationcontroller
⁶²https://developer.android.com/guide/components/activities/index.html

https://developer.apple.com/documentation/uikit/uinavigationcontroller
https://developer.android.com/guide/components/activities/index.html
https://developer.apple.com/documentation/uikit/uinavigationcontroller
https://developer.android.com/guide/components/activities/index.html

Navigation 388

Example of a navigation controller (from Apple Developer Documentation - UINavigationCon-
troller)

In Android, activities are used to create single screens to define our UI. We can
use tasks in order to define a stack of activities known as the back stack. The
startActivity method can be used to start a new activity. When this happens, the
activity is pushed onto the activity stack. In order to return to the previous screen,
the physical back button on every Android device can be pressed in order to run the
finish method on the activity. This closes the current activity, pops it off the stack
and returns the user back to the previous activity.

Android Back Stack (from Android Developers Documentation - Tasks and Back Stack)

Navigation 389

In React Native, all of our component code executes on a JavaScript thread. These
components then bridge to a separate main thread responsible for rendering native
iOS and Android views.

In the first chapter, we briefly mentioned how we can eject from Expo if we need to
include any native dependencies ourselves. This includes any native iOS or Android
code we wish to write ourselves or third-party libraries that provide a React Native
API which bridges to a specific native module. We can use this to include native
navigation in our application.We can create nativemodules around platform-specific
navigation components (such as UINavigationController and Activity) and bridge
them ourselves in a React Native app.

We’ll explore bridging native APIs in much more detail in the “Native
Modules” chapter.

Pros

The primary benefit of this approach is a smoother navigation experience for the user.
This is because purely native iOS/Android navigation APIs can be used with all of
our navigation happening within the native thread. This approach works well when
including React Native in an existing native iOS or Android application. Using the
same navigation components and transitions throughout the appmeans that different
screens in the app will feel consistent regardless of whether they’re written natively
or with React Native.

Additionally, if an operating system update modifies the style or functionality of
navigation components, you won’t have to wait for the same modifications to be
made in your JavaScript-based navigation library.

Cons

One of the issues with this navigation approach is that it usually involves more work.
This is because we need to ensure navigation works for both iOS and Android, using
their respective native navigational components.

Navigation 390

Moreover, we will also have to eject from Expo and take care of linking and bridging
any nativemodules ourselves. This means we cannot build an applicationwith native
iOS navigation components if we do not own a Mac computer.

Another potential problem with this solution is that it can be significantly harder
to modify or create new navigation patterns. In order to customize how navigation
is performed, we would have to dive in to the native code and understand how the
underlying navigation APIs work before being able to change them.

Navigation with JavaScript

The second approach to adding navigation to a React Native app is to use JavaScript
to create components and navigation patterns that look and feel like their native
counterparts. This is done solely using React Native built-in components and the
Animated API for animations.

We can explain how this works by using stack navigation as an example again. As
we mentioned earlier, this pattern allows us to move between screens by pushing
a second screen on top of the previous one. We usually see this happen by seeing
the second screen slide in from either the right or bottom edge of the device screen
or fading in from the bottom. When we attempt to navigate backwards, the current
screen slides back out in the opposite direction or fades out from the top.

With the Animated API, we can use animated versions of some built-in components
such as View as well as create our own. We can create stack based navigation (as well
as other navigation patterns) by nesting our screen components within an Animated

component. We can then have our screens slide (or fade) in and out of our device
when we need to allow the user to navigate throughout our application. We’ll have
to maintain the hierarchy of screens entirely in JavaScript ourselves.

Pros

One of the advantages of using JavaScript-based navigation is that it can be simpler to
build the components and animation mechanisms that can be used in both platforms
instead of trying to create a bridge to all of the core native iOS/Android APIs that
we would need. This also gives us more control and flexibility to customize specific
navigation features instead of relying on what’s available in the native platforms. We

Navigation 391

can debug any issues we experience with navigation that is purely JavaScript-based
without diving in to native code.

Most of the work during an animation using the React Native Animated API is on
the JavaScript thread. This means that every frame needs to go over the bridge to
the native thread to update the views during a transition. Fortunately, we have the
option to use the API’s native driver option to render natively driven animations.
These animations are performed with animation calculations happening on the
native thread. By building navigation with this, navigation animations will perform
smoothly.

We’ll explore the built-in AnimatedAPI in greater detail in the next chapter.

Another benefit of keeping all of our navigation elements within the JavaScript
thread means that we can take advantage of services such as CodePush⁶³ to allow
us to dynamically update the application’s JavaScript code (which includes our
navigation) without rolling out a new build to our users.

Cons

There are also disadvantages with this approach. Firstly, the app can never feel
exactly like a native application in terms of navigation. As much as we can try to
mimic how navigation components and animations look like in the native layer,
there may always be slight discrepancies. This can be a bigger problem if we happen
to be including React Native components into an existing native iOS or Android
application. Building transitions between screens built natively and screens built
with React Native can be a challenge if we’re using only JavaScript for our navigation.

Another potential concern with JavaScript-based navigation is slower updates in
relation to the underlying platform’s operating system. Updates to the iOS or Android
version may bring changes to the native navigational views and components. We’ll
need to make sure the views and components built with JavaScript are also updated
in order to better match how they are represented natively.

⁶³https://github.com/Microsoft/react-native-code-push

https://github.com/Microsoft/react-native-code-push
https://github.com/Microsoft/react-native-code-push

Navigation 392

Third-party libraries

In React Native, we have the option of setting up navigation by creating our own
native modules or by building our own JavaScript-based implementation. There are
also a number of community-supported libraries that we can use for either of these
approaches:

• React Native Navigation⁶⁴ by Wix engineering and Native Navigation⁶⁵ by
Airbnb are both navigation libraries that provide access to native iOS/Android
navigation components using a React Native API.

• React Navigation⁶⁶ and React Router⁶⁷ are two popular third-party JavaScript
navigation libraries.

Using one of these libraries can make things significantly easier than building a
navigation pattern entirely from scratch. Moreover, all of these community-built
libraries are continuously maintained with updates included in each new release.

Navigation alternatives

Not all mobile applications need to have a complete navigation architecture. Exam-
ples include an app that only has a few screens or does not even need any navigation
in the first place (such as a single-screen game). However, most applications with
more than a few screens will usually need some form of navigation to allow the user
to move between them.

There is no single correct solution for applications that require navigation. Different
mobile appswill always have different features and complexities. For example, it may
be easier to use a JavaScript implementation in a brand new and relatively simple
application without complex navigation requirements. However, we might find it
easier to use a native solution if we plan on rolling React Native components into
a native application. We should always weigh the benefits and challenges of each
solution before deciding which approach to take.

⁶⁴https://wix.github.io/react-native-navigation/#/
⁶⁵http://airbnb.io/native-navigation/
⁶⁶https://facebook.github.io/react-native/docs/navigation.html#react-navigation
⁶⁷https://reacttraining.com/react-router/native/guides/philosophy

https://wix.github.io/react-native-navigation/#/
http://airbnb.io/native-navigation/
https://facebook.github.io/react-native/docs/navigation.html#react-navigation
https://reacttraining.com/react-router/native/guides/philosophy
https://wix.github.io/react-native-navigation/#/
http://airbnb.io/native-navigation/
https://facebook.github.io/react-native/docs/navigation.html#react-navigation
https://reacttraining.com/react-router/native/guides/philosophy

Navigation 393

Deprecated solutions
Navigation is a core tenet of any native application. Just like other built-in
components (such as View and Text), React Native also used to provide a number
of different built-in navigation APIs. Here are a few examples:

• NavigatorIOS provides an API to access the UINavigationController com-
ponent for iOS to build a screen navigation stack. It is not currently main-
tained and cannot be used for Android.

• Navigator is a JavaScript navigation implementation that was included into
React Native when it first launched. Expo built ExNavigator on top of this
API with the aim of providing more. features. However, it did not provide a
complete navigation solution and was deprecated soon after.

• NavigationExperimental is another JavaScript implementation and aimed to
solve the problems noticed in Navigator. ExNavigationwas built by the Expo
team to act as a wrapper around NavigationExperimental. It is also now
deprecated.

It is important to note that all of these APIs are either not maintained or are
deprecated. It is recommended to use one of the newer community-built navigation
libraries instead.

Since navigation is an important part of many mobile applications, all of these ef-
forts were done in order to provide a simple React Native API that can be imported
and used directly in a component. However, navigation is a lot more complex than
many other built-in components. It is not easy to provide a simple navigation
API that can solve all navigation concerns in any application. For this reason,
a number of different open-source alternatives were created by the community.
The efforts from Navigator, NavigationExperimental, and the community-built
ex-navigation were combined to form the community-built React Navigation

library.
https://facebook.github.io/react-native/docs/navigatorios.html

https://facebook.github.io/react-native/docs/navigatorios.html
https://facebook.github.io/react-native/docs/navigatorios.html

Navigation 394

In this chapter

We covered the differences between native and JavaScript navigation implementa-
tions as well as some of their advantages and disadvantages. For each approach, we
also discussed how using an open-source library that is continuously maintained can
make things easier than building a navigation architecture from scratch.

Co-authored by the Facebook team and the open-source community, React Naviga-
tion⁶⁸ is the recommended option in the React Native documentation. For this reason,
we’ll use React Navigation, a JavaScript-based implementation, in this chapter to
handle navigation in our sample application.

Contact List

In this chapter, we’re going to build a contact list application that allows a user to
view contact information across several screens. We’ll begin by building our first
screen, Contacts, that shows a list of contact information fetched from a mock API.

⁶⁸https://facebook.github.io/react-native/docs/navigation.html#react-navigation

https://facebook.github.io/react-native/docs/navigation.html#react-navigation
https://facebook.github.io/react-native/docs/navigation.html#react-navigation
https://facebook.github.io/react-native/docs/navigation.html#react-navigation

Navigation 395

Contacts

Then we’ll explore how we can allow the user to navigate to a separate Profile

screen for each specific contact.

Navigation 396

Profile

We’ll then include another top level screen, Favorites, to show favorited contacts.

Navigation 397

Favorites

Then we’ll build a User screen and tie together our top level screens using a tab
navigation component.

Navigation 398

User

The last screen we’ll create will be an options screen that the user can navigate to
through the user screen.

Navigation 399

Options

By building out each screen and connecting them, we’ll get a better understanding of
how a navigation pattern such as tabs can be coupled with stack navigation. While
doing so, we’ll also look into creating a small state container that controls the entire
state of our app and can be accessed in any of our screens.

By the time we’re finished with this chapter, we will have covered a number of
different navigation patterns and show how they can fit together. We’ll also be
touching on a number of core concepts we’ve already covered in the previous
chapters.

Previewing the app

Before we begin, to try the completed app on your device:

• On Android, you can scan this QR code with the Expo app:

Navigation 400

QR Code

• On iOS, you can navigate to the contact-list/ directory within the sample
code folder and either preview it on the iOS simulator or send the link of the
project URL to your device as we explained in the first chapter.

Spend a little time navigating between the different screens to get a feel for all the
functionality.

Starting the project

Just as we did in the previous chapters, let’s create a new app with the following
command:

expo init contact-list --template blank@sdk-36 --yarn

Once this finishes, navigate into the contact-list directory and start the app.

Navigation 401

Like you did in previous chapters, copy over the contact-list/utils directory from
the sample code into your own project. The utils/ directory contains the following:

• A few utility methods
• Methods that return results from a mock API. These are results copied from the
Random User Generator⁶⁹ API and saved locally. A little delay is also included
with each method.

• A colors object with a number of different colors

Copy over the contact-list/components directory as well. These components are
the low level presentational components that don’t manage any state of their own.
They are used in the app to display UI elements in all of our screens. Here’s a brief
overview of each of the components:

• ContactListItemwill be used for each contact’s list item in the Contacts screen.
⁶⁹https://randomuser.me/

https://randomuser.me/
https://randomuser.me/

Navigation 402

• ContactThumbnail renders a thumbnail for the contact avatar that can fire an
action when pressed. It can also show the user’s name and phone number
underneath based on optional props. This component will be used to render a
list of user avatars in the Favorites screen as well as show the user thumbnail
in the Profile and User screens.

• DetailListItem shows a list item with a title, subtitle, and an optional icon.
This component will be used to show contact details in the Profile screen as
well as mocked links in the Options screen.

Feel free to dive in and take a closer look at any of the files within utils/ and
components/ to get a better idea of how they work.

Container and Presentational components

Before we dive in to building our application, let’s take a little time to further
understand how we separate our screen and component logic. In all of our previous
chapters, we explored building custom components to create higher-level abstrac-
tions over built-in components (such as View, Text, etc…). We can think of screens
in the same way. Just like any other component, screens wrap over lower level
components. The difference here is that we can build our screen components to take
up the entire device screen and allow the user to navigate between them.

We briefly explored this pattern in the “Core Components” chapter where we
built a Feed and Comments screen for our Instagram clone app. While doing so, we
managed all of our remote data fetching within the Feed screen and the rest of our
lower level components only received this information via props. This further ties
in to the pattern we’ve seen in each of the applications we’ve built in this book
so far: the concept of container components that take care of data fetching and
state management and presentational components that take in data and provide the
markup and styling in our application. We can closely follow this logic by separating
how we build screens and components in an application.

Although the Feed screen was responsible for data fetching in our Instagram clone
app, we still had some state managed in our root App component. For a relatively
large application with a significant number of screens, managing data in a single
component like App may not be the most maintainable way to handle state. For this

Navigation 403

reason, third-party state container libraries are commonly used. Instead of using a
specific library and trying to understand its APIs, we’ll handle data in our application
by writing a small custom state container. The same pattern will apply to any
complex application with a central state container regardless of which library is used.

Contacts

The first screen we’ll build is the main contacts screen which will also serve as the
starting point of our application. Create a screens/ directory and add a Contacts.js
file. As wementioned in the “Core Components” chapter, a more complex application
might be structured with directories nested within screens/ for better categorizing
of files. Since this application only consists of five screens, we’ll add them all to the
screens/ directory.

We’ll begin by defining our imports in the file:

contact-list/1/screens/Contacts.js
import React from 'react';

import {

StyleSheet,

Text,

View,

FlatList,

ActivityIndicator,

} from 'react-native';

import ContactListItem from '../components/ContactListItem';

import { fetchContacts } from '../utils/api';

We’ve imported a few necessary built-in components including FlatList and
ActivityIndicator as well as our custom ContactListItem component responsible
for displaying each of our contacts items in the list. Aside from components, we also
import the fetchContacts method in order to retrieve our list of contacts and our
colors object from utils.

Now let’s begin creating our class component:

Navigation 404

contact-list/1/screens/Contacts.js

export default class Contacts extends React.Component {

state = {

contacts: [],

loading: true,

error: false,

};

async componentDidMount() {

try {

const contacts = await fetchContacts();

this.setState({

contacts,

loading: false,

error: false,

});

} catch (e) {

this.setState({

loading: false,

error: true,

});

}

}

We’ve set up local component state that includes a contacts array and loading/error
attributes. In here, we’ve set our initial loading property to true because we fire our
API call as soon as our component mounts. We then update this to false as soon as
our request finishes successfully.

Let’s now build the UI that gets rendered on the screen:

Navigation 405

contact-list/1/screens/Contacts.js

renderContact = ({ item }) => {

const { name, avatar, phone } = item;

return (

<ContactListItem name={name} avatar={avatar} phone={phone} />

);

};

render() {

const { loading, contacts, error } = this.state;

const contactsSorted = contacts.sort((a, b) =>

a.name.localeCompare(b.name),

);

return (

<View style={styles.container}>

{loading && <ActivityIndicator size="large" />}

{error && <Text>Error...</Text>}

{!loading &&

!error && (

<FlatList

data={contactsSorted}

keyExtractor={keyExtractor}

renderItem={this.renderContact}

/>

)}

</View>

);

}

In the component render method, we sort our contacts alphabetically and show a
loading indicator if state.loading is true, an error message if state.error is true, or
a list of our contacts using FlatList. For each item in the list, we use a renderContact

Navigation 406

helper method that passes down the contact name, avatar and phone as props to
ContactListItem.

We’ll also need to create our list’s keyExtractor method which we can write under
our imports at the top of the file:

contact-list/1/screens/Contacts.js

import { fetchContacts } from '../utils/api';

const keyExtractor = ({ phone }) => phone;

export default class Contacts extends React.Component {

The last thing we’ll need to do is set up the styles for this component. Since our
existing presentational component ContactListItem takes care ofmost of our styling,
we’ll just set up styles for the container View component:

contact-list/1/screens/Contacts.js

const styles = StyleSheet.create({

container: {

backgroundColor: 'white',

justifyContent: 'center',

flex: 1,

},

});

Try it out

To quickly take a look at how this screen renders, we can temporarily place this
component within App:

Navigation 407

contact-list/App.js

import React from 'react';

import Contacts from './screens/Contacts';

export default function App() {

return <Contacts />;

}

Now we can see our Contacts screen if we run the app:

Contacts

You may notice the top and bottom of our list touches the edges of our device screen.
This will be fixed once we introduce our header and tab navigation components to
the app. Pressing any of the contacts does not do anything just yet. We’ll explore
how we can navigate to a specific contact’s profile screen in a bit.

Navigation 408

You may also see a warning about a missing onPress prop which is required in the
ContactListItem component. We’ll include it once we begin adding navigation to
our application.

Profile

Let’s move on to building our second screen, Profile, which shows details about a
specific contact. Create a Profile.js file within the same screens directory. Again,
we’ll begin with our imports:

contact-list/1/screens/Profile.js

import React from 'react';

import { StyleSheet, View } from 'react-native';

import ContactThumbnail from '../components/ContactThumbnail';

import DetailListItem from '../components/DetailListItem';

import { fetchRandomContact } from '../utils/api';

import colors from '../utils/colors';

We’ve included the ContactThumbnail and DetailListItem presentational compo-
nents that we’ll need for this screen as well as the colors object we’ll use for some
styling.

We’ve also included fetchRandomContact to obtain a random contact’s information.
This is temporary in order to render this screen for the first time, but will be removed
once we have navigation in place and the contact ID is passed from the previous
screen to the Profile screen.

We can build our class component as follows:

Navigation 409

contact-list/1/screens/Profile.js
export default class Profile extends React.Component {

state = {

contact: {},

};

async componentDidMount() {

const contact = await fetchRandomContact();

this.setState({

contact,

});

}

render() {

const { avatar, name, email, phone, cell } = this.state.contact;

return (

<View style={styles.container}>

<View style={styles.avatarSection}>

<ContactThumbnail

avatar={avatar}

name={name}

phone={phone}

/>

</View>

<View style={styles.detailsSection}>

<DetailListItem

icon="mail"

title="Email"

subtitle={email}

/>

<DetailListItem

icon="phone"

title="Work"

subtitle={phone}

Navigation 410

/>

<DetailListItem

icon="smartphone"

title="Personal"

subtitle={cell}

/>

</View>

</View>

);

}

}

We’ve defined a contact object as our only attribute in our component state. Our
componentDidMount method fires an API call to get a random contact. Again, this
is temporary until we’ve included our navigation library. This is because we’ll
eventually pass the contact’s information from the Contacts screen.

We have not included any loading or error attributes for this same reason. This
is because once navigation is in place, this screen will only be accessible through
another screen by pressing on a contact list item or thumbnail. This means there will
be no loading or potential errors from data fetching happening at this point.

Although this might usually be the case when building screens that are only
accessible through other screens in a stack, there are scenarios where we may need
to fetch data in nested screens. A good example is deep linking which allows a user
to navigate to a certain part of the app through another app or a web browser using
a specific link. We’ll explore this topic later in this chapter.

The render method is relatively straightforward. We show the user thumbnail for
the top half of the screen using ContactThumbnail as our component (which accepts
the user’s avatar, name, and phone as props). For the bottom half of the screen, we’re
displaying a few DetailListItem components to show the user’s email, work, and
cell numbers.

We can now create styling for the View container components we’re using for layout
at the end of the file:

Navigation 411

contact-list/1/screens/Profile.js

const styles = StyleSheet.create({

container: {

flex: 1,

},

avatarSection: {

flex: 1,

alignItems: 'center',

justifyContent: 'center',

backgroundColor: colors.blue,

},

detailsSection: {

flex: 1,

backgroundColor: 'white',

},

});

Try it out

Once again, let’s render our screen to see if everything is working well:

contact-list/App.js

import React from 'react';

import Profile from './screens/Profile';

export default function App() {

return <Profile />;

}

Running the app should show the Profile screen for a random contact:

Navigation 412

Profile

React Navigation

Now that we have our first two screens in place, let’s start adding navigation to
our app! As we mentioned earlier in the chapter, there are a number of different
open-source navigation libraries available. We’ll be using React Navigation⁷⁰ for this
application. Since it’s purely a JavaScript implementation, we don’t have to worry
about linking iOS and Android dependencies. We can install it to our app by using
expo install:

expo install react-navigation@4.0.10

Specify version 4.0.10 as above so that the version in your application matches the
versionwe use here.Wewill also need to install all the navigators that live in separate
packages:

⁷⁰https://facebook.github.io/react-native/docs/navigation.html#react-navigation

https://facebook.github.io/react-native/docs/navigation.html#react-navigation
https://facebook.github.io/react-native/docs/navigation.html#react-navigation

Navigation 413

expo install react-navigation-stack@^1.7.3 react-navigation-tabs@^1.2.0\

react-navigation-drawer@^1.4.0

react-navigation uses a separate library, react-native-gesture-handler⁷¹, under
the hood to leverage the native touch handling system to handle user gestures instead
of the built-in “responder system” that React Native uses by default.

This library exposes the native platform’s predefined gesture handlers (rotate, pan,
long press, pinch, etc), and supports relationships between these gesture handlers,
e.g. a tap gesture within a ScrollView should slightly delay any highlight states.
In the next chapter we’ll cover React Native’s built-in gesture handling, which is
a good choice for simple gestures and gestures that require custom JavaScript logic,
but it’s good to keep react-native-gesture-handler in mind for when you need the
common native gestures.

react-navigation also uses react-native-reanimated⁷² which is an abstraction for
the built-in Animated API provided by React Native. Both these libraries need to be
installed when using react-navigation:

expo install react-native-gesture-handler react-native-reanimated

If you need to use react-navigation without using an Expo managed workflow,
you will also need to link these libraries separately. The instructions in the
react-navigation documentation show you how.

The documentation also shows a number of other libraries that need to be installed
and linked (react-native-screens and react-native-safe-area-context). The
versions of all the navigators installed for this chapter are also compatible with
react-navigation@3.x and do not use these primitives. If you install the latest
versions of each navigator, you will need to also install and link these libraries.

https://reactnavigation.org/docs/en/getting-started.html#installation

⁷¹https://github.com/kmagiera/react-native-gesture-handler
⁷²https://docs.expo.io/versions/latest/sdk/reanimated/

https://github.com/kmagiera/react-native-gesture-handler
https://docs.expo.io/versions/latest/sdk/reanimated/
https://reactnavigation.org/docs/en/getting-started.html#installation
https://reactnavigation.org/docs/en/getting-started.html#installation
https://github.com/kmagiera/react-native-gesture-handler
https://docs.expo.io/versions/latest/sdk/reanimated/

Navigation 414

Stack navigation

We briefly described how a stack navigator works earlier in this chapter. This pattern
allows a user to navigate from one screen to another by pushing the new screen to
the top of the stack. The user can also pop the current screen off the stack in order
to return to the previous screen.

In both iOS and Android, a back button at the top of the navigation bar is how a
user usually navigates back to a previous screen by removing the current screen off
the stack. On Android devices, there is also a physical or soft key back button at the
bottom of the device screen that also allows you to go back on any application.

With this navigation flow, only one screen is visible at any given time. We can think
of the entire navigation stack as an ordered array of screens, with the last element
being the screen that is currently visible and the first element being the root screen
(or the screen that is visible when loading the app for the first time).

Let’s begin by connecting our first two screens as a single stack. We’ll define all of
our navigation logic in a separate routes.js file at the root of our entire app.

Create the file and add the following code:

contact-list/2/routes.js

import { createAppContainer } from 'react-navigation';

import { createStackNavigator } from 'react-navigation-stack';

import Contacts from './screens/Contacts';

import Profile from './screens/Profile';

const StackNavigator = createStackNavigator({

Contacts: {

screen: Contacts,

},

Profile: {

screen: Profile,

},

});

Navigation 415

export default createAppContainer(StackNavigator);

We pass in our route configuration as an argument to createStackNavigator. The
object maps route names to their configuration. We have two routes defined above,
Contacts and Profile.

For each route, we define a configuration object with just one property: screen.
This is the component we wish to render at that specific route. We’ll explore more
configuration options in a bit.

We can also pass a second argument to createStackNavigator, our stack navigator
configurations. We’ll also explore this a little later in this section.

In React Navigation, every navigator including createStackNavigator creates a
higher-order component that wraps over each of the screen components defined
within its route configurations. It enhances each of its components by creating a
new component with a navigation prop.

Finally, we export createAppContainer which defines a navigation container. This
allows you to manage app state and define top-level navigations in your application.

Higher-Order Components
In short, higher-order components are functions that take in an existing
component and return a new component with added functionality. They’re
useful for minimizing code duplication by containing common logic in a
single component that can be shared among multiple components. They’re
also useful for libraries like React Navigation.

Internally, createStackNavigator() generates a higher-order component
that provides each of our screens with a navigation prop. This prop serves
as the interface between our screen components and the React Navigation
library.

For more information on higher-order components, refer to its section in
the Appendix.

The navigation prop provides us with the following:

Navigation 416

• navigate: Method to allow us to navigate between screens. With a stack
navigator, this method pushes the new screen on top of the current stack.

• state: Object that returns the name and identifier of the current route as well
as its parameters.

• setParams: Method to change the current screen’s parameters.
• goBack: Method that allows us to navigate to a previous screen. For stack
navigation, this pops the current screen (or number of screens) until the
specified screen is reached within the stack.

The React Navigation documentation⁷³ contains more detail about the navigation
prop.

Let’s now modify our App.js file to render our container instead of a single
component:

contact-list/2/App.js

1 import React from 'react';

2

3 import AppContainer from './routes';

4

5 export default function App() {

6 return <AppContainer />;

7 }

Now that we’ve set up the first stack navigator of our application, we’ll need to use
our navigation prop to allow the user to navigate from the Contacts screen to the
Profile screen. We know that the ContactListItem component contains an onPress

prop that fires the action passed to it. Let’s modify how we render this component
within our Contacts screen:

⁷³https://reactnavigation.org/docs/navigation-prop.html

https://reactnavigation.org/docs/navigation-prop.html
https://reactnavigation.org/docs/navigation-prop.html

Navigation 417

contact-list/2/screens/Contacts.js

renderContact = ({ item }) => {

const { navigation: { navigate } } = this.props;

const { name, avatar, phone } = item;

return (

<ContactListItem

name={name}

avatar={avatar}

phone={phone}

onPress={() => navigate('Profile')}

/>

);

};

Try running the app and you’ll notice a header navigation bar at the top of the screen.
In addition to supplying the navigation prop, the createStackNavigator HOC also
renders a header above the screen components it wraps.

Navigation 418

Contacts

Pressing any contact will navigate to the profile screen. The default behaviour for
iOS is an animation that slides the new screen from the right. For Android, the newer
screen fades in from the bottom.

Navigation 419

Profile

Pressing the back button also pops the profile screen of the stack and returns us to
the contacts screen.

Although our stack navigation pattern works, we have two problems:

• Recall that we’re using the fetchRandomContact() method to obtain a random
contact. This means that pressing a specific contact doesn’t actually load their
information in the Profile screen.

• The header navigation bar doesn’t currently show anything. We should attempt
to show the current screen name so the user knows which screen they’re on.

Navigation parameters

When building multiple screens in a mobile application, it is common to have screens
that depend on some particular data in order to display the correct information. A
good example is the Profile screen in this application. Everytime a user presses a

Navigation 420

contact on the Contacts screen, we expect to see that specific contact’s information
on the next screen.

The secondary screen here is not a child of the previous screen, but it still relies
on a piece of data. In these scenarios, we need to be able to pass this data as part
of the transition in our navigation flow. React Navigation lets us attach navigation
parameters using the navigate method.

We previously mentioned that the navigation prop allows us to change parameters
for a screen using its setParamsmethod.We can similarly pass parameters to another
screen. Let’s take a look at howwe set this up for navigating from the Contacts screen
to Profile:

contact-list/3/screens/Contacts.js
renderContact = ({ item }) => {

const { navigation: { navigate } } = this.props;

const { id, name, avatar, phone } = item;

return (

<ContactListItem

name={name}

avatar={avatar}

phone={phone}

onPress={() => navigate('Profile', { contact: item })}

/>

);

};

In the second argument of the navigate method, we pass a single object for our
parameters that contains a contact key with the value being the actual contact item.
This means that every time we press a contact on the Contacts screen, the user is
navigated to the Profile screen with the actual contact being passed as a parameter.

With this, we can simplify our Profile screen component and not load a specific
contact every time the screen is mounted:

Since we are now receiving a contact object through navigation props, we no longer
need to fetch a random contact using fetchRandomContact(). We can simplify our
Profile screen and not fire any API calls when our screen mounts:

Navigation 421

contact-list/3/screens/Profile.js
export default class Profile extends React.Component {

render() {

const { navigation: { state: { params } } } = this.props;

const { contact } = params;

const { avatar, name, email, phone, cell } = contact;

return (

<View style={styles.container}>

<View style={styles.avatarSection}>

<ContactThumbnail

avatar={avatar}

name={name}

phone={phone}

/>

</View>

<View style={styles.detailsSection}>

<DetailListItem

icon="mail"

title="Email"

subtitle={email}

/>

<DetailListItem

icon="phone"

title="Work"

subtitle={phone}

/>

<DetailListItem

icon="smartphone"

title="Personal"

subtitle={cell}

/>

</View>

</View>

);

}

Navigation 422

}

We’ve removed all local state from Profile and the component is now driven by
props.We extract the contact object from the navigation prop and use that to render
the contact’s information. If you try running the app now, navigating to a specific
contact will show the correct information.

Although passing in the contact object as a navigation parameter works, we generally
want to avoid this pattern.

So far, we’ve explored how parents and children use props to communicate. If a
parent performs a state update, that update propagates through props down to its
children. When the child receives the updated props, the child re-renders.

What’s different here is that Profile is not a direct child of the Contacts screen.
Instead Profile is receiving this data through navigation parameters. Navigation
parameters are set once, at the time of navigation. So if the state for a contact changes,
that state update will not be propagated through navigation parameters.

Put another way, we’ve pushed a copy of a part of our state into navigation
parameters. But we have no means in place to update that copy when the state
changes.

So, we should instead pass the id of a contact as a parameter. Then, Profile can
look up the contact in the list of all contacts. We’ll explore this improvement once
we introduce a centralized location for all our state later in this chapter.

We’ve built the first two screens that make up our first navigator. We covered how
to transition between them by using the API supplied by the navigation prop.

Each screen will usually have its own unique set of features, and we’ll sometimes
need to be able to modify how our navigation-specific components are displayed.
Next, we’ll explore how to configure our navigation screen options before moving
on to expanding the number of screens and navigation patterns in our application.

Navigation screen options

With React Navigation, we can use the navigationOptions property to modify
navigation settings for a particular screen or to modify settings for every screen
within a navigator (such as createStackNavigator).

Navigation 423

We’ll use this property to add a title to the navigation header at the top of both
screens. Let’s add it to each of our screens in route.js:

contact-list/3/routes.js

const StackNavigator = createStackNavigator({

Contacts: {

screen: Contacts,

navigationOptions: {

title: 'Contacts',

},

},

We add our options using a navigationOptions object.We specify the title attribute
to be Contacts. We can run the application to confirm that this works.

Contacts

Now let’s do the same for the Profile screen along with adding a few more details:

Navigation 424

contact-list/3/routes.js

Profile: {

screen: Profile,

navigationOptions: ({ navigation: { state: { params } } }) => {

const { contact: { name } } = params;

return {

title: name.split(' ')[0],

headerTintColor: 'white',

headerStyle: {

backgroundColor: colors.blue,

},

};

},

},

Although we passed in an object to navigationOptions for the Contacts screen, we
also can pass in a function. Passing a function gives us access to the navigation

prop. This is useful when we want our options to be derived from the navigation
parameters. Here, we get the name of our contact and use the split⁷⁴ method to
only render her or his first name as the title

We also modify the colors of our header by using headerTintColor, which allows us
to change the text color, and headerStyle to pass in an object of styles for the header.
We change the backgroundColor to blue.

If we try navigating to the Profile screen now, we’ll see our header styled
appropriately.

⁷⁴https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/split

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/split
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/split

Navigation 425

Profile

Notice on iOS that the title on the left of the header defaults to the title of
the previous screen. We have control over this with the headerBackTitle

property of navigation options if we need to modify this.

For a full list of navigator configuration options provided by
createStackNavigator, refer to the documentation⁷⁵.

⁷⁵https://reactnavigation.org/docs/navigators/stack

https://reactnavigation.org/docs/navigators/stack
https://reactnavigation.org/docs/navigators/stack

Navigation 426

Default Navigation Options
Although we can specify all of our navigation options for each screen
separately, it may be useful to set default navigation options for multiple
screens if they all share the same configurations.We can do this by defining
navigationOptions at the level of the navigator. For example:

const StackNavigator = createStackNavigator({

Contacts: {

screen: Contacts,

navigationOptions: {

headerStyle: {

backgroundColor: 'white',

},

},

},

Profile: {

screen: Profile,

},

}, {

navigationOptions: {

headerStyle: {

backgroundColor: colors.blue,

},

},

});

Screen-specific navigation options for the same configuration will over-
write those defined for the navigator. In this example, all the screens within
this navigator will have a default background color of blue for their header
components. The Contacts screen however will have a white background
color that overwrites the default setting.

Although we can add all of our screen-specific navigation options where we define
our navigators in routes.js, that file can quickly become quite large if we have a lot
of screens and configuration settings. We can instead define each screen’s navigation
options inside each component.

Let’s begin with Contacts. We’ll remove the navigationOptions property from our

Navigation 427

routes.js file and add it as a static class method to the Contacts component:

contact-list/4/screens/Contacts.js

export default class Contacts extends React.Component {

static navigationOptions = {

title: 'Contacts',

};

state = {

This is the same technique we’ve used previously for propTypes and defaultProps.
We can now do the same thing for Profile:

contact-list/4/screens/Profile.js

export default class Profile extends React.Component {

static navigationOptions = ({

navigation: { state: { params } },

}) => {

const { contact: { name } } = params;

return {

title: name.split(' ')[0],

headerTintColor: 'white',

headerStyle: {

backgroundColor: colors.blue,

},

};

};

render() {

Without the navigationOptions properties, we can clean up our routes.js file:

Navigation 428

contact-list/4/routes.js

1 import { createAppContainer } from 'react-navigation';

2 import { createStackNavigator } from 'react-navigation-stack';

3

4 import Contacts from './screens/Contacts';

5 import Profile from './screens/Profile';

6

7 const StackNavigator = createStackNavigator({

8 {

9 Contacts,

10 Profile,

11 },

12 {

13 initialRouteName: 'Contacts',

14 },

15 });

16

17 export default createAppContainer(StackNavigator);

Since the screen components are the only route configurations we have for both
screens, we’ve simplified things here by just using the shorthand format.

The only new addition here is the initialRouteName property. Without this property,
the first screen listed is the default screen. Explicitly defining the initial route is
optional, but it can make things more obvious to anyone unfamiliar with the API. It
also reduces the risk of the wrong screen being displayed as the default if any screens
are added or removed.

Now, wherever this navigator is loaded in the application, the first screen that shows
will be the Contacts screen.

Like initialRouteName, React Navigation allows us to modify a num-
ber of different configuration properties for stack navigators besides
navigationOptions. The documentation⁷⁶ goes into more detail on each
of them.

⁷⁶https://reactnavigation.org/docs/stack-navigator.html#stacknavigatorconfig

https://reactnavigation.org/docs/stack-navigator.html#stacknavigatorconfig
https://reactnavigation.org/docs/stack-navigator.html#stacknavigatorconfig

Navigation 429

Tab navigation

A single stack navigator might suffice for a small mobile app with just two or three
screens. However, most applications have more than a few screens and only using
stack navigation may not be the most efficient way to navigate throughout the entire
app. This is where another navigation paradigm, like tabs, can be useful.

We can use tab navigation to allow the user to navigate to a number of different
screens at the root level. Tabs are suitable when a number of screens carry roughly
equal importance.

Bottom navigation - (from Material Design documentation - Components)

Favorites

Before we begin adding tab navigation components to our application, we’ll need to
build a few more screens. Let’s build the Favorites screen of our application first.
We can create a Favorites.js file within the screens directory and begin with its
imports:

Navigation 430

contact-list/5/screens/Favorites.js

import React from 'react';

import {

StyleSheet,

Text,

View,

FlatList,

ActivityIndicator,

} from 'react-native';

import { fetchContacts } from '../utils/api';

import ContactThumbnail from '../components/ContactThumbnail';

As we briefly described earlier in this chapter, this screen will be responsible for
showing a list of favorited contacts.

The Favorites component will not be a child of the Contacts component. And
because we’ll be using tab navigation as opposed to stack navigation, we can’t pass
contacts to favorites via a navigation prop.

Therefore, we’ll use the fetchContacts() function to fetch this data directly from
the API. We usually want to avoid making numerous API calls to obtain the same
data on every screen. Once we include a state container later in the chapter, we’ll
remove this.

Note that we’ve set up the fetchContacts API call to randomly “favorite” contacts
by setting the favorites boolean on the contact object to true. That way, we should
always have some contacts displayed on this screen.

Navigation 431

contact-list/5/screens/Favorites.js

export default class Favorites extends React.Component {

static navigationOptions = {

title: 'Favorites',

};

state = {

contacts: [],

loading: true,

error: false,

};

async componentDidMount() {

try {

const contacts = await fetchContacts();

this.setState({

contacts,

loading: false,

error: false,

});

} catch (e) {

this.setState({

loading: false,

error: true,

});

}

}

The screen’s render function:

Navigation 432

contact-list/5/screens/Favorites.js

renderFavoriteThumbnail = ({ item }) => {

const { navigation: { navigate } } = this.props;

const { avatar } = item;

return (

<ContactThumbnail

avatar={avatar}

onPress={() => navigate('Profile', { contact: item })}

/>

);

};

render() {

const { loading, contacts, error } = this.state;

const favorites = contacts.filter(contact => contact.favorite);

return (

<View style={styles.container}>

{loading && <ActivityIndicator size="large" />}

{error && <Text>Error...</Text>}

{!loading &&

!error && (

<FlatList

data={favorites}

keyExtractor={keyExtractor}

numColumns={3}

contentContainerStyle={styles.list}

renderItem={this.renderFavoriteThumbnail}

/>

)}

</View>

);

}

Navigation 433

In render, we filter our list of contacts using a favorites flag. Using the same pattern
we used in Contacts, we show a loading indicator while the request is still being
made, an error message if the request fails, or the list of contacts.

We’re making use of the numColumns prop for FlatList to render three contacts in
every row. The renderFavoriteThumbnail method is responsible for every item in
the list where we use our ContactThumbnail component to display the user’s avatar.
Notice how we’ve also passed in a navigate action to the onPress prop. This allows
the user to navigate to the contact’s profile screen by pressing an avatar on the
Favorites screen - just like when they press a contact on the Contacts screen.

Since we’re using FlatList again, we can hook up a keyExtractor method once
more:

contact-list/5/screens/Favorites.js

import ContactThumbnail from '../components/ContactThumbnail';

const keyExtractor = ({ phone }) => phone;

export default class Favorites extends React.Component {

And we can finish things off here by adding a few styles:

contact-list/5/screens/Favorites.js

const styles = StyleSheet.create({

container: {

backgroundColor: 'white',

justifyContent: 'center',

flex: 1,

},

list: {

alignItems: 'center',

},

});

Navigation 434

Try it out

In a moment, we’ll build the Users screen then add tab navigation to our app. Before
we do, let’s add Favorites to our stack navigator just so we can see what it looks
like. We’ll set it as our initial route:

contact-list/routes.js

import { createAppContainer } from 'react-navigation';

import { createStackNavigator } from 'react-navigation-stack';

import Contacts from './screens/Contacts';

import Profile from './screens/Profile';

import Favorites from './screens/Favorites';

const StackNavigator = createStackNavigator(

{

Contacts,

Profile,

Favorites,

},

{

initialRouteName: 'Favorites',

},

);

export default createAppContainer(StackNavigator);

Navigation 435

Favorites

Note that pressing on any avatar navigates to the Profile screen.

As Favorites will not be a part of our stack navigation, go ahead and revert the
changes here to the original route configurations.

User screen

Let’s now build the third root screen, User, which displays the details of the user of
the app. We’ll begin with its imports:

Navigation 436

contact-list/5/screens/User.js

import React from 'react';

import {

StyleSheet,

Text,

View,

ActivityIndicator,

} from 'react-native';

import ContactThumbnail from '../components/ContactThumbnail';

import colors from '../utils/colors';

import { fetchUserContact } from '../utils/api';

We’re using another method, fetchUserContact, from our API utility file. This
fetches a single contact.

We define the header styles at the top of the component:

contact-list/5/screens/User.js

export default class User extends React.Component {

static navigationOptions = {

title: 'Me',

headerTintColor: 'white',

headerStyle: {

backgroundColor: colors.blue,

},

};

Similar to the Profile screen, we’re displaying a blue header bar with white text.

Our local state and componentDidMountmethod will follow the same pattern as other
screens:

Navigation 437

contact-list/5/screens/User.js

state = {

user: [],

loading: true,

error: false,

};

async componentDidMount() {

try {

const user = await fetchUserContact();

this.setState({

user,

loading: false,

error: false,

});

} catch (e) {

this.setState({

loading: false,

error: true,

});

}

}

Our render method will show the ContactThumbnail with the user’s name, avatar
and phone number:

Navigation 438

contact-list/5/screens/User.js

render() {

const { loading, user, error } = this.state;

const { avatar, name, phone } = user;

return (

<View style={styles.container}>

{loading && <ActivityIndicator size="large" />}

{error && <Text>Error...</Text>}

{!loading && (

<ContactThumbnail

avatar={avatar}

name={name}

phone={phone}

/>

)}

</View>

);

}

And finally, we’ll style our container to have a blue background as well as place our
thumbnail in the center of our screen:

contact-list/5/screens/User.js

const styles = StyleSheet.create({

container: {

flex: 1,

alignItems: 'center',

justifyContent: 'center',

backgroundColor: colors.blue,

},

});

Navigation 439

Try it out

We’ll again temporarily modify our routes.js file to test out this component:

contact-list/routes.js

import { createAppContainer } from 'react-navigation';

import { createStackNavigator } from 'react-navigation-stack';

import Contacts from './screens/Contacts';

import Profile from './screens/Profile';

import User from './screens/User';

const StackNavigator = createStackNavigator(

{

Contacts,

Profile,

User,

},

{

initialRouteName: 'User',

},

);

export default createAppContainer(StackNavigator);

Navigation 440

User

Nested navigators

Now that we have all the screens that make up our tabs, we can start putting our tab
navigation logic in place. Let’s import and use createBottomTabNavigator in our
routes.js file:

contact-list/routes.js

import { createAppContainer } from 'react-navigation';

import { createBottomTabNavigator } from 'react-navigation-tabs';

import Contacts from './screens/Contacts';

import Favorites from './screens/Favorites';

import User from './screens/User';

const TabNavigator = createBottomTabNavigator({

Navigation 441

Contacts,

Favorites,

User,

});

export default createAppContainer(TabNavigator);

If we run the app, we’ll see tabs with labels at the bottom of the iOS device screen
and at the top of the Android screen. These tabs allow us to switch between the three
screens.

Tabs

We’ll modify the styling of our tabs in a little bit. At the moment, we have a bigger
problem.We don’t have our header component anymore and if we try pressing any of
the contacts in the Contacts or Favorites screens, nothing happens. This is because
we’ve removed our stack navigator entirely and only have a single tab navigation
system in place. What we want to do is compose our two navigators together.

Navigation 442

Let’s update our route configurations. We’ll begin with the imports since we’ll be
including a few new ones:

contact-list/5/routes.js

import React from 'react';

import { createAppContainer } from 'react-navigation';

import { createStackNavigator } from 'react-navigation-stack';

import { createBottomTabNavigator } from 'react-navigation-tabs';

import { MaterialIcons } from '@expo/vector-icons';

import Favorites from './screens/Favorites';

import Contacts from './screens/Contacts';

import Profile from './screens/Profile';

import User from './screens/User';

import colors from './utils/colors';

We’re importing both navigators from react-navigation as well as MaterialIcons
from Expo’s vector-icons package.

This package is a wrapper around react-native-vector-icons⁷⁷, a library that
contains a number of vector icons. Creating icons is done by using JSX to define
icon components. For this reason, we’ve imported React to this file as well.

You can find a list of all the icons provided by the library here⁷⁸. There are a
number of different icon sets that can be used (such as FontAwesome). We’ll
only be using the MaterialIcons icon set for this application.

Although we are customizing the look and feel of the tab bar ourselves in
this application, a separate API, createMaterialBottomTabNavigator⁷⁹, is
also provided by react-navigation to make it simpler to create a bottom
tab bar with a material design theme.

To compose stack navigation and tab navigation, each tab will have its own separate
navigation stack. This means that instead of passing specific screens to each tab, we’ll

⁷⁷https://github.com/oblador/react-native-vector-icons
⁷⁸https://expo.github.io/vector-icons/
⁷⁹https://reactnavigation.org/docs/en/material-bottom-tab-navigator.html#docsNav

https://github.com/oblador/react-native-vector-icons
https://expo.github.io/vector-icons/
https://reactnavigation.org/docs/en/material-bottom-tab-navigator.html#docsNav
https://github.com/oblador/react-native-vector-icons
https://expo.github.io/vector-icons/
https://reactnavigation.org/docs/en/material-bottom-tab-navigator.html#docsNav

Navigation 443

pass in a stack (a createStackNavigator component) that contains every possible
screen within that tab.

For example, we want the contacts list to still use a stack navigator. That way, the
user can navigate to individual profiles. That stack navigator will reside inside our
app’s broader tab navigator.

Let’s write our stack navigator for the contacts list. It looks the same as before, with
one additional configuration:

contact-list/5/routes.js

const ContactsScreens = createStackNavigator(

{

Contacts,

Profile,

},

{

initialRouteName: 'Contacts',

navigationOptions: {

tabBarIcon: getTabBarIcon('list'),

},

},

);

For the “Contacts” tab, we want to first show the Contacts screen and allow the user
to be able to navigate to the Profile screen.

Notice howwe’ve also added navigation options to specify this navigator’s tabBarIcon.
We’re passing in a getTabIcon helpermethod to retrieve a list icon component. Let’s
define this function right after our imports:

Navigation 444

contact-list/5/routes.js

import colors from './utils/colors';

const getTabBarIcon = icon => ({ tintColor }) => (

<MaterialIcons name={icon} size={26} style={{ color: tintColor }} />

);

const ContactsScreens = createStackNavigator(

The tabBarIcon option expects a function. It will call that function with a single
object that has the properties focused and tintColor.

The getTabIcon function returns a function that returns a specific icon component
from the MaterialIcons icon set given its name. When we define our our tab
navigator, we’ll assign the tint colors for all icons in each of our tabs.

Higher-order functions
The tabBarIcon parameter in our navigation options expects a function that takes
an object with focused and tintColor as attributes. It looks like the following:

tabBarIcon: (params) => (

<MaterialIcons

name="list"

size={26}

style={{ color: params.tintColor }}

/>

),

The focused argument allows us to render something different depending on
whether the current tab is focused in view or not. We’re not doing anything for
the different states so we do not even use focused at all. We only use tintColor in
order to give our tab icons an appropriate active or inactive color defined as options
in createBottomTabNavigator.

With parameter context matching, we can simplify howwe pass in our arguments:

Navigation 445

tabBarIcon: ({ tintColor }) => (

<MaterialIcons

name="list"

size={26}

style={{ color: tintColor }}

/>

),

Since every icon in each of the tabs have the same tint color and size, we simplify
how we render our icons by defining a single getTabIcon function:

const getTabBarIcon = icon => ({ tintColor }) => (

<MaterialIcons name={icon} size={26} style={{ color: tintColor }} />

);

// ...

tabBarIcon: getTabBarIcon('list'),

The getTabIcon function takes an icon string as a parameter and returns a function
that takes the correct parameters expected by tabBarIcon (an object with tintColor
and focused).

appendix_higher_order_components

Let’s do the same for our other two tabs, Favorites and User:

contact-list/5/routes.js

const FavoritesScreens = createStackNavigator(

{

Favorites,

Profile,

},

{

initialRouteName: 'Favorites',

navigationOptions: {

tabBarIcon: getTabBarIcon('star'),

Navigation 446

},

},

);

const UserScreens = createStackNavigator(

{

User,

},

{

initialRouteName: 'User',

navigationOptions: {

tabBarIcon: getTabBarIcon('person'),

},

},

);

For the Favorites tab, the idea is similar. We want to default to the Favorites screen
but still allow the user to navigate to the Profile screen for any specific contact. The
User stack navigator only has one screen at the moment, but we’ll add a second
screen a little later.

Now that we’ve defined our stack navigators, we can write up our tab navigator
underneath:

contact-list/5/routes.js

const TabNavigator = createBottomTabNavigator(

{

Contacts: ContactsScreens,

Favorites: FavoritesScreens,

User: UserScreens,

},

{

initialRouteName: 'Contacts',

tabBarPosition: 'bottom',

tabBarOptions: {

style: {

Navigation 447

backgroundColor: colors.greyLight,

},

showLabel: false,

showIcon: true,

activeTintColor: colors.blue,

inactiveTintColor: colors.greyDark,

},

},

);

And at the very end of the file, we connect our top-level tab navigation to the app
container.

contact-list/5/routes.js

export default createAppContainer(TabNavigator);

We pass each stack navigator as the screen for their corresponding tab. React
Navigation allows us to pass entire navigators as a tab screen and the first screen of
the stack will be the default screen for that tab.

tabBarOptions allow us to modify styling for our tabs. We first define the tab
background color using the style object. Since we only want icons to show, we’ve
also specified showLabel to be false and showIcon to true. We set our icon colors for
both active (where the user is currently viewing) and inactive tabs.

Try it out

If we try running the application now, we’ll see our complete tab logic working!

Navigation 448

Contacts

Try navigating between the different tabs as well as pressing a contact list item or
thumbnail to navigate to the Profile screen. You’ll notice that navigating to the
Profile screen in one tab will only show that screen there. Composing both tab and
stack navigation allows for more complex navigation architectures where each stack
in a tab maintains the history of its own navigated screens independently from the
others.

Modal navigation

We’ll introduce our final screen in the app, Options, to demonstrate how stack
navigators can be modified to render new screens with a modal. This is only for
iOS and does not work for Android.

We can begin by creating an Options.js file in the screens/ directory:

Navigation 449

contact-list/screens/Options.js
1 import React from 'react';

2 import { StyleSheet, View } from 'react-native';

3 import { MaterialIcons } from '@expo/vector-icons';

4

5 import DetailListItem from '../components/DetailListItem';

6 import colors from '../utils/colors';

7

8 export default class Options extends React.Component {

9 static navigationOptions = ({ navigation: { goBack } }) => ({

10 title: 'Options',

11 headerLeft: (

12 <MaterialIcons

13 name="close"

14 size={24}

15 style={{ color: colors.black, marginLeft: 10 }}

16 onPress={() => goBack()}

17 />

18),

19 });

20

21 render() {

22 return (

23 <View style={styles.container}>

24 <DetailListItem title="Update Profile" />

25 <DetailListItem title="Change Language" />

26 <DetailListItem title="Sign Out" />

27 </View>

28);

29 }

30 }

31

32 const styles = StyleSheet.create({

33 container: {

34 flex: 1,

35 backgroundColor: 'white',

Navigation 450

36 },

37 });

In this screen, we render a few DetailListItem components to represent options
that the user can press to modify their profile settings. We’ve included a headerLeft
attribute for the screen’s navigation options that renders a close icon. We’ve added
a callback to the icon’s onPress prop that fires navigate.goBack to close the current
screen and return to the previous one.

Let’s build the functionality to allow the user to navigate to this screen. We’ll do this
in the User screen by adding an icon to our header:

contact-list/screens/User.js

static navigationOptions = ({ navigation: { navigate } }) => ({

title: 'Me',

headerTintColor: 'white',

headerStyle: {

backgroundColor: colors.blue,

},

headerRight: (

<MaterialIcons

name="settings"

size={24}

style={{ color: 'white', marginRight: 10 }}

onPress={() => navigate('Options')}

/>

),

});

Don’t forget to import MaterialIcons in this file.

Now, in routes.js, we’ll import our Options screen:

Navigation 451

contact-list/routes.js

import Options from './screens/Options';

Then add it to the UserScreens stack navigator within routes.js:

contact-list/routes.js

const UserScreens = createStackNavigator(

{

User,

Options,

},

{

mode: 'modal',

initialRouteName: 'User',

navigationOptions: {

tabBarIcon: getTabBarIcon('person'),

},

},

);

We use the mode attribute to specify this navigator should have modal transitions for
iOS.

Try it out

Start the app and give it a shot! You’ll be able to navigate directly to the Options

screen through User.

Navigation 452

User

By pressing the icon on the right of our header bar, you’ll notice that the screen
moves up from the bottom if you own an iOS device.

Navigation 453

Options

If you try on Android device or emulator, the screen will fade in just like any of the
other screens in the stack.

Drawer navigation

Another navigation pattern that is commonly used is drawer navigation, where
views are accessible through a drawer that slides in from the left side of the screen.

Navigation 454

Navigation drawer - (from Material Design documentation - Components)

Just like tab navigation, a drawer navigator allows users to switch between equally
important views quickly.

Neither of these patterns is better than the other. Choosing the right pattern depends
on both preferences as well as the number of root screens that the user can access.

A good rule of thumb is that tabs work well when there are three to five of them. If
there are many important, unrelated screens that the user should be able to access
without navigating through a stack, then drawer navigation may be more suitable.

Although our final app only includes tab navigation for our three core views, let’s ex-
plore what using drawer navigation would look like. We’ll swap in DrawerNavigator

for TabNavigator.

Let’s modify our routes.js file:

Navigation 455

contact-list/6/routes.js
1 import React from 'react';

2 import { createAppContainer } from 'react-navigation';

3 import { createStackNavigator } from 'react-navigation-stack';

4 import { createDrawerNavigator } from 'react-navigation-drawer';

5 import { MaterialIcons } from '@expo/vector-icons';

6

7 import Favorites from './screens/Favorites';

8 import Contacts from './screens/Contacts';

9 import Profile from './screens/Profile';

10 import User from './screens/User';

11 import Options from './screens/Options';

12

13 const getDrawerItemIcon = icon => ({ tintColor }) => (

14 <MaterialIcons name={icon} size={22} style={{ color: tintColor }} />

15);

16

17 const ContactsScreens = createStackNavigator(

18 {

19 Contacts,

20 Profile,

21 },

22 {

23 initialRouteName: 'Contacts',

24 navigationOptions: {

25 drawerIcon: getDrawerItemIcon('list'),

26 },

27 },

28);

29

30 const FavoritesScreens = createStackNavigator(

31 {

32 Favorites,

33 Profile,

34 },

35 {

Navigation 456

36 initialRouteName: 'Favorites',

37 navigationOptions: {

38 drawerIcon: getDrawerItemIcon('star'),

39 },

40 },

41);

42

43 const UserScreens = createStackNavigator(

44 {

45 User,

46 Options,

47 },

48 {

49 mode: 'modal',

50 initialRouteName: 'User',

51 navigationOptions: {

52 drawerIcon: getDrawerItemIcon('person'),

53 },

54 },

55);

56

57 const DrawerNavigator = createDrawerNavigator(

58 {

59 Contacts: ContactsScreens,

60 Favorites: FavoritesScreens,

61 User: UserScreens,

62 },

63 {

64 initialRouteName: 'Contacts',

65 },

66);

67

68 export default createAppContainer(DrawerNavigator);

Note that instead of the tabBarIcon option, we use drawerIcon to display an icon

Navigation 457

near the menu item within the drawer. We also change the name of the method that
returns our icon from getTabIcon to getDrawerIcon.

Although the drawer can be accessed by swiping on the left edge of the device screen
towards the right, it also helps to have a menu icon in each of the main screens that
can open and close the drawer. We’ll begin with the Contacts screen:

contact-list/6/screens/Contacts.js

static navigationOptions = ({ navigation: { openDrawer } }) => ({

title: 'Contacts',

headerLeft: (

<MaterialIcons

name="menu"

size={24}

style={{ color: colors.black, marginLeft: 10 }}

onPress={() => openDrawer()}

/>

),

});

We’ve added a menu icon on the left hand side of the header. With React Navigation,
we can fire the openDrawer and closeDrawer methods to open and close the drawer
respectively. toggleDrawer will fire either of those depending on the current state of
the navigation drawer. This allows us to toggle the drawer with a single method. In
this application, we only need to use openDrawer.

We can add this same icon to the Favorites screen:

Navigation 458

contact-list/6/screens/Favorites.js

static navigationOptions = ({ navigation: { openDrawer } }) => ({

title: 'Favorites',

headerLeft: (

<MaterialIcons

name="menu"

size={24}

style={{ color: colors.black, marginLeft: 10 }}

onPress={() => openDrawer()}

/>

),

});

And the User screen:

contact-list/6/screens/User.js

static navigationOptions = ({ navigation: { openDrawer, navigate } })\

=> ({

title: 'Me',

headerTintColor: 'white',

headerStyle: {

backgroundColor: colors.blue,

},

headerLeft: (

<MaterialIcons

name="menu"

size={24}

style={{ color: 'white', marginLeft: 10 }}

onPress={() => openDrawer()}

/>

),

headerRight: (

<MaterialIcons

name="settings"

size={24}

Navigation 459

style={{ color: 'white', marginRight: 10 }}

onPress={() => navigate('Options')}

/>

),

});

Try it out

Try running the application with these drawer settings enabled. We can see a menu
icon in either of our three root screens.

Contacts Screen - Drawer

We can open and close our drawer by swiping right on the left edge of the screen or
by pressing the menu icon.

Navigation 460

Drawer

Sharing state between screens

So far, we’ve built our entire application using local component state. While doing
so, we noticed some of the challenges that applications with multiple screens have
when data must be shared between screens.

For example, our Favorites screen uses the same list of contacts as the Contacts

screen. But we had to make an API call for each screen, fetching the list twice. It
would be better to fetch the list just once and share data between screens.

There are a few different ways we can make this better. One way is to define
all the data within our application in the App component. We can then use the
initialRouteParams property that React Navigation provides for our root tab
navigator to assign the state to its initial route - Contacts. With this approach, we can
continue to pass our entire data to every other screen we navigate using navigation
parameters similar to how we pass contact information from Contacts to Profile.

Navigation 461

This method of maintaining state is not ideal due to the fact that every screen now
has access to all the data in the entire app. Moreover, this will most likely create
performance issues as we would need to re-render every screen to reflect changes to
the state being modified in a specific screen.

State containers

React Native applications that contain a navigation architecture generally handle
data flow differently than we’ve done in our apps so far. So far, we’ve stored data
in the root and screen components of our apps, and we’ve passed data down from
parent to child as props. In this app, we’ll use a state container to manage all of our
application data in a separate external location outside of our components.

This can be useful to separate the UI and data concerns in our application. In a typical
application with multiple top-level screens, this approach allows us to pass parts of
our state to each of our screens.

Third-party libraries

One approach to including a state container is to use a third-party library. Redux⁸⁰
and MobX⁸¹ are two popular examples that allow users to maintain their entire
application state in a single location. They also impose certain restrictions on how
this state object can be modified.

Using a community-supported library means we don’t have to spend the time trying
to build the logic ourselves. There are packages that exist in both the Redux and
MobX ecosystem that allow us to bind our React or React Native components directly
to the global store. Modifying our state requires an action to be dispatched which
gives us more explicit control to modify our state in only specific parts of our
application. We can also take advantage of middlewares to intercept any of our
actions before it reaches our state. This can allow us to log all of our state changes
for easier debugging as well as fire asynchronous operations as part of our actions if
we need to.

Downsides of using an external library include the learning curve needed to learn
its API and specific requirements. Redux, for example, adheres to the use of pure

⁸⁰https://github.com/reactjs/redux
⁸¹https://github.com/mobxjs/mobx

https://github.com/reactjs/redux
https://github.com/mobxjs/mobx
https://github.com/reactjs/redux
https://github.com/mobxjs/mobx

Navigation 462

functions (or functions without any side effects) and requires a decent amount of
boilerplate code in order to connect a component to our store with appropriate
actions. MobX uses the concept of reactive programming and observables in order
to have our state update when our data is changed. Using either of these libraries
or another state management tool altogether means that we would need to fully
understand how they work.

Custom state container

Instead of using a community-supported library, we always have the option of
building our own state container in our application. This can be useful when we
want complete control over how we manage our data, or when we don’t want to
introduce a complex dependency.

While suitable for our needs in this app, a simple state container built from scratch
will not have nearly as many features or plugins as a third-party library. Most
medium and large React Native applications use Redux or MobX. These libraries
have a bit of a learning curve and require more boilerplate code, but they make
things more predictable by constraining how we manage our state. They can help us
build consistent applications that are easier to test, debug and analyze using different
built-in or external plugins.

To demonstrate the overall approach of how to manage state in a central location
with navigation, we’ll use an extremely simple state container of our own instead of
relying on a third-party solution.

Copy over the the contact-list/store.js file in the sample code to the root of you
application. If you like, take a look at the file to get a better understanding of how it
works.

In this file, we’ve defined all of our application state as a single object called state:

Navigation 463

contact-list/store.js

1 let state = {

2 isFetchingContacts: true,

3 isFetchingUser: true,

4 contacts: [],

5 user: {},

6 error: false,

7 };

Each of the field values in this object are the default values when our application
is first launched. We then export three methods that can be used throughout our
application:

• getState returns the application state.
• setState takes in new values and updates our state.We don’tmutate the current
state object directly, but instead create a new copy with our updated values.

• onChange allows us to listen for changes in our state.

Let’s begin by including it to our Contacts screen. We’ll start with importing our
store:

contact-list/7/screens/Contacts.js

import store from '../store';

Now we can make use of our store methods:

Navigation 464

contact-list/7/screens/Contacts.js

export default class Contacts extends React.Component {

static navigationOptions = {

title: 'Contacts',

};

state = {

contacts: store.getState().contacts,

loading: store.getState().isFetchingContacts,

error: store.getState().error,

};

async componentDidMount() {

this.unsubscribe = store.onChange(() =>

this.setState({

contacts: store.getState().contacts,

loading: store.getState().isFetchingContacts,

error: store.getState().error,

}),

);

const contacts = await fetchContacts();

store.setState({ contacts, isFetchingContacts: false });

}

componentWillUnmount() {

this.unsubscribe();

}

We’ve set up our local state by connecting its attributes to the correct global store
attributes. Notice how we’ve defined loading to be equal to the global state attribute
of isFetchingContacts. This component does not need to know anything else in the
state that it is not using (and this includes the isFetchingUser boolean that would

Navigation 465

be used in the User screen). We have complete control of how we want to refer and
define our state relevant to the context of this component.

In componentDidMount, we set our onChange method to update our local component
state using this.setState. When we get the results of our API call, we use our
store setState method to update our shared store and since we also use onChange -
our local component state will also update to reflect this change. We make sure to
unsubscribe from our change listener when our component unmounts as well.

Now in our rendermethod, we’ll need to update which parameters we look for within
our state:

contact-list/7/screens/Contacts.js

render() {

const { contacts, loading, error } = this.state;

const contactsSorted = contacts.sort((a, b) =>

a.name.localeCompare(b.name),

);

return (

<View style={styles.container}>

{loading && <ActivityIndicator size="large" />}

{error && <Text>Error...</Text>}

{!loading &&

!error && (

<FlatList

data={contactsSorted}

keyExtractor={keyExtractor}

renderItem={this.renderContact}

/>

)}

</View>

);

}

Let’s do the same thing for Favorites:

Navigation 466

contact-list/7/screens/Favorites.js
export default class Favorites extends React.Component {

static navigationOptions = {

title: 'Favorites',

};

state = {

contacts: store.getState().contacts,

loading: store.getState().isFetchingContacts,

error: store.getState().error,

};

async componentDidMount() {

const { contacts } = this.state;

this.unsubscribe = store.onChange(() =>

this.setState({

contacts: store.getState().contacts,

loading: store.getState().isFetchingContacts,

error: store.getState().error,

}),

);

if (contacts.length === 0) {

const fetchedContacts = await fetchContacts();

store.setState({

contacts: fetchedContacts,

isFetchingContacts: false,

});

}

}

componentWillUnmount() {

this.unsubscribe();

}

Navigation 467

We technically shouldn’t need to submit fetch our contacts from the API again. We
know that when the user loads the application for the first time, the contacts are
retrieved within the Contacts screen, which is the first tab. However, it’s generally
better not rely on the order each screen loads to ensure our data is ready. This is both
for testability (we can easily run this screen individually), and because if we later
add the capability to navigate to this screen without loading the Contacts screen
first, our application will fail. A good example of when this might happen is when
we allow a user to deep link to a specific screen from outside the application entirely.
We’ll explore this concept in a bit.

Similarly, we can update our render method as well:

contact-list/7/screens/Favorites.js

render() {

const { contacts, loading, error } = this.state;

const favorites = contacts.filter(contact => contact.favorite);

return (

<View style={styles.container}>

{loading && <ActivityIndicator size="large" />}

{error && <Text>Error...</Text>}

{!loading &&

!error && (

<FlatList

data={favorites}

keyExtractor={keyExtractor}

numColumns={3}

contentContainerStyle={styles.list}

renderItem={this.renderFavoriteThumbnail}

/>

)}

</View>

);

}

Navigation 468

And finally, we can update our User screen to follow this same approach:

contact-list/7/screens/User.js

export default class User extends React.Component {

static navigationOptions = {

title: 'Me',

headerTintColor: 'white',

headerStyle: {

backgroundColor: colors.blue,

},

};

state = {

user: store.getState().user,

loading: store.getState().isFetchingUser,

error: store.getState().error,

};

async componentDidMount() {

this.unsubscribe = store.onChange(() =>

this.setState({

user: store.getState().user,

loading: store.getState().isFetchingUser,

error: store.getState().error,

}),

);

const user = await fetchUserContact();

store.setState({ user, isFetchingUser: false });

}

componentWillUnmount() {

this.unsubscribe();

}

Navigation 469

render() {

const { user, loading, error } = this.state;

const { avatar, name, phone } = user;

return (

<View style={styles.container}>

{loading && <ActivityIndicator size="large" />}

{error && <Text>Error...</Text>}

{!loading && (

<ContactThumbnail

avatar={avatar}

name={name}

phone={phone}

/>

)}

</View>

);

}

}

Don’t forget to import store within Favorites and User!

Try it out

If we try running the application at this point, we’ll notice everything works exactly
the same. Again, the difference now is that each top level screen in our application
uses the same shared data object in our application.

Instead of being more specific about which parts of our central store we wanted
to connect to in each screen, we could have just connected the entire store using
state = store.getState();. However, connecting only parts of the global state to
our component not only improves how we encapsulate which state parameters we
need, but it can also improve re-render performance. In React Native, a component
re-renders if any part of its state changes. With this approach, we can have our
component re-render only when the state specific to it changes.

Navigation 470

Although a centralized store allowed us to handle how data is managed across a
number of top-level screens, it’s important to remember that this adds an extra
layer of abstraction to our application. Not only do we now pass presentational data
from parent components to child components, we also pass data through navigation
parameters when we navigate through certain screens and use a top-level state
container that manages all the data in our application.

Deep Linking

The last major topic we’ll explore in this chapter is deep linking. Deep linking
means launching the app and navigating to a specific screen automatically. A deep
link bypasses the tab, stack, and drawer navigation, taking the user directly to the
desired screen. This can be useful when launching your app from a webpage, a push
notification, or another app.

Imagine the user gets a push notification that a new contact has been added. When
the user taps the notification, they should be taken directly to the profile screen for
that contact, rather than having to navigate their way from the initial screen of the
app.

Deep links are similar to typing a URI (Uniform Resource Identifier) into a web
browser. On the web, https://www.fullstackreact.com might load the homepage
for the website, while https://www.fullstackreact.com/react-native will load a
different page. Similarly in mobile applications, we perform a deep link using a URI,
where each URI generally takes us to a different screen.

Using a navigation library for a mobile app helps us build our app in terms of screens
– this makes it easy to connect any screen of our app to a specific URI.

Let’s explore how we can add deep linking to our current application by allowing
the user to navigate to a specific contact’s profile directly. With Expo, the base URI
is different based on the state of the application:

• exp://localhost:19000/+ or exp://10.2.8.358:19000/+ is the URI we use
during development. 10.2.8.358 is our IP address and 19000 is the port that
the app is running. We can see our IP address and the port right underneath
the QR code printed to the terminal when we start the application with yarn

start.

Navigation 471

• exp://exp.host/@fullstackio/contact-list/+ is what we can use if our app
is published to the Expo client. If you have the final version of this app installed
on your device through the client, try typing this address into a web browser
on your mobile device and you’ll navigate directly to it.

• For standalone apps published outside of Expo, the URI can be defined in
app.json. For example:

app.json

{

"expo": {

"scheme": "contact-list"

}

}

This will give us a URI of contact-list://+.

Instead of having to take care of all of these different possible URI values, Expo
provides us with a linkingUri attribute from a Constants object that will resolve to
the correct URI depending on the state of the application.

Now let’s begin adding deep linking to our contact list application! Our goal is to
allow a user to navigate to a specific contact only using his or her first name. For
example, exp://{linkingUri}/+?name=ali will navigate directly to Ali’s profile. If
the contact doesn’t exist, we’ll have the user remain in the Contacts screen and not
be navigated anywhere. For a real production application however, it would make
more sense to show a user-friendly error message if this happens.

We’ll begin with importing Linking and Constants into our Contacts screen:

Navigation 472

contact-list/screens/Contacts.js

import React from 'react';

import {

StyleSheet,

Text,

View,

FlatList,

ActivityIndicator,

Linking,

} from 'react-native';

The Linking API provides methods that allow us to handle incoming deep links as
well as open external links. We’ll add two of these methods to the lifecycle hook that
fires after our component mounts:

contact-list/screens/Contacts.js

async componentDidMount() {

this.unsubscribe = store.onChange(() =>

this.setState({

contacts: store.getState().contacts,

loading: store.getState().isFetchingContacts,

error: store.getState().error,

}),

);

const contacts = await fetchContacts();

store.setState({ contacts, isFetchingContacts: false });

Linking.addEventListener('url', this.handleOpenUrl);

const url = await Linking.getInitialURL();

this.handleOpenUrl({ url });

}

Navigation 473

Let’s go over the two methods we added:

• The getInitialURL method will fire when a URI associated with the app is
accessed externally. This method allows a user to deep link to a particular part
of the application when the app is closed and not running in the background.
In here, we pass the URL obtained to a handleOpenUrl method.

• For instances where the app is running in the background, we can listen to URL
events and provide a callback to handle these situations. This is why we use
addEventListener and pass a handler to the same handleOpenUrl method.

Like any event listener, we’ll need to make sure it is removed when our component
is destroyed/unmounted:

contact-list/screens/Contacts.js

componentWillUnmount() {

Linking.removeEventListener('url', this.handleOpenUrl);

this.unsubscribe();

}

Now that we’ve handled incoming deep links in our component, let’s create our
handler method to respond appropriately to the correct URL:

contact-list/screens/Contacts.js

handleOpenUrl(event) {

const { navigation: { navigate } } = this.props;

const { url } = event;

const params = getURLParams(url);

if (params.name) {

const queriedContact = store

.getState()

.contacts.find(

contact =>

contact.name.split(' ')[0].toLowerCase() ===

params.name.toLowerCase(),

Navigation 474

);

if (queriedContact) {

navigate('Profile', { id: queriedContact.id });

}

}

}

We use a getURLParams utility function to extract query parameters from a given
string and return an object.

For example:

getURLParams(exp://localhost:19000/+?name=abby)

will return:

{name: 'abby'}.

If the name parameter exists, we check our state for a contact with the same first
name and if so - navigate to the Profile screen for that user.

We’ll also need to import the getURLParams utility function at the top of our file:

contact-list/screens/Contacts.js

import getURLParams from '../utils/getURLParams';

Although deep linking to a contact by name is straightforward, this approach is
flawed. If two contacts have the same name, our logic will fail, always returning
the first contact it finds that meets the condition. Ideally, we would want to pass the
contact’s ID as a URI parameter. In this example application however, we generate
random UUIDs for each contact every time we load our application. For this reason,
we’ve shown the name-based approach for simplicity.

Try it out

While developing locally, you can try deep linking with different methods depending
on which platform you’re using:

Navigation 475

• If you’re using the iOS simulator or an actual device connected to the same
network, you can open Safari and type exp://localhost:19000/+?name=ali

into the address bar.
• On an Android emulator on the same network, you can test it through a
terminal command:

adb shell am start -W -a "android.intent.action.VIEW" -d "exp://localho\

st:19000/+?name=ali"

If localhost:19000 isn’t working, the application may be running on a
different port. Take a look at the terminal to see which port is being used.

You’ll notice you’ll be navigated directly to his profile screen:

Deep Linking

If we try navigating to a contact with a name that doesn’t exist, we’ll remain in the
Contacts screen.

Navigation 476

Summary

Navigation is one of themost crucial elements of building an application that requires
multiple screens. In this chapter, we looked at different navigation patterns as well as
how they can be composed to allow for a complete navigation system. We built out a
complete contact list example app to explore this in-depth, using all of the navigators
provided by React Navigation. We then moved on to building a small state container
to further understand how data can be shared between top-level screens. Finally, we
finished the chapter by including deep linking functionality in a specific part of our
application.

While discussing the differences between native and JavaScript navigation libraries,
we briefly touched on how JavaScript implementaions use their own custom com-
ponents by relying on React Native components and the Animated API. Animations
and gestures are important topics in mobile development and the next two chapters
will dive deeper into how they work in React Native.

Animation
In order to animate a component on the screen, we’ll generally update its size,
position, color, or other style attributes continuously over time. We often use
animations to imitate movement in the real world, or to build interactivity similar
to familiar physical objects.

We’ve seen several examples of animation already:

• In our weather app, we saw how the KeyboardAvoidingView shrinks to accom-
modate room for the keyboard.

• In our messaging app, we used the LayoutAnimation API to achieve similar
keyboard-related animations.

• In our contacts app, we used react-nagivation, which automatically coordi-
nates transition animations between screens.

In this chapter and the next, we’ll explore animations in more depth by building a
simple puzzle game app. React Native offers two main animation APIs: Animated and
LayoutAnimation. We’ll use these to create a variety of different animations in our
game. Along theway, we’ll learn the advantages and disadvantages of each approach.

The next chapter (“Gestures”) will primarily focus on a closely related topic: gestures.
Gestures help us build components that respond to tapping, dragging, pinching,
rotating, etc. Combining gestures and animations enables us to build intuitive,
interactive experiences in React Native.

Animation challenges

Building beautiful animations can be tricky. Let’s look at a few of the challenges we’ll
face, and how we can overcome them.

Animation 478

Performance challenges

To achieve animations that look smooth, we’ll want our UI to render at 60 frames-per-
second (fps). In other words, we need to render 1 frame roughly every 16milliseconds
(1000 milliseconds / 60 frames). If we perform expensive computations that take
longer than 16 milliseconds within a single frame, our animations may start to look
choppy and uneven. Thus, we must constantly pay attention to performance when
working with animation.

Performance issues tend to fall into a few specific categories:

• Calculating new layouts during animation: When we change a style attribute
that affects the size or position of a component, React Native usually re-
calculates the entire layout of the UI. This calculation happens on a native
thread, but is still an expensive calculation that can result in choppy animations.
In this chapter, we’ll learn how we can avoid this by animating the transform
style attribute of a component.

• Re-rendering components: When a component’s state or props change, React
must determine how to reconcile these changes and update the UI to reflect
them. React is fairly efficient by default, so components generally render
quickly enough that we don’t optimize their performance. With animation,
however, a large component that takes a few milliseconds to render may lead to
choppy animations. In this chapter, we’ll learn how we can reduce re-renders
with shouldComponentUpdate to acheive smoother animations.

• Communicating between native code and JavaScript: Since JavaScript runs
asynchronously, JavaScript code won’t start executing in response to a gesture
until the frame after the gesture happens on the native side. If React Native
must pass values back and forth between the native thread and the JavaScript
engine, this can lead to slow animations. In this chapter, we’ll learn howwe can
use useNativeDriver with our animations to mitigate this.

Complex control flow challenges

When working with animations, we tend to write more asynchronous code than
normal. We must often wait for an animation to complete before starting another

Animation 479

animation (using an imperative API) or unmounting a component. The asynchronous
control flow and imperative calls can quickly lead to confusing, buggy code.

To keep our code clear and accurate, we’ll use a state machine⁸² approach for our
more complex components. We’ll define a set of named states for each component,
and define transitions from one state to another. This is similar to the React
component lifecycle: our component will transition through different states (similar
to mounting, updating, unmounting, etc), and we can run a specific function every
time the state changes.

If you’re familiar with state machines, you might be wondering how our
state machine approach will differ from normal usage of React component
state. React state is an implicit state machine, whichwe often use without
defining specific states. In our case, we’re going to be explicit about our
states, naming them and defining transitions between them. Ultimately
though, we’re just using React state in a slightly more structured way
than normal.

If you’re not familiar with state machines, that’s fine. We’ll be building
ours together as we go through the chapter. Even if you’re not familiar
with the term “state machine,” the coding style will probably look familiar,
since we’ve used it elsewhere in this book already (e.g. the INPUT_METHOD

from the “Core APIs” chapter).

Building a puzzle game

In this chapter, we’ll learn how to use the React Native animation APIs to build a
slider-puzzle game.

You can try the completed app on your phone by scanning this QR code from within
the Expo app:

⁸²https://en.wikipedia.org/wiki/Finite-state_machine

https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine

Animation 480

Our app will have two screens. The first screen let’s us choose the size of the puzzle
and start a new game:

The second screen openswhenwe start the game. The goal of the game is to rearrange
the squares of the puzzle to complete the image displayed in the top left:

Animation 481

Project setup

In this chapter, we’ll work out of the sample code directory for the project. Through-
out this book we’ve already set up several projects and created many components
from scratch, so for this project the import statements, propTypes, defaultProps, and
styles are already written for you. We’ll be adding the animations and interactivity
to these components as we go.

In the sample code there’s a directory called checkpoints, which contains 2 different
iterations of the puzzle app, checkpoints/puzzle-1 and checkpoints/puzzle-2. The
finished project is in the puzzle directory.

We’ll use the contents of checkpoints/puzzle-1 as a foundation for our app.
Since this project includes a lot of existing code, we’re going to work out of
the checkpoints/puzzle-1 directory directly, rather than selectively copying over
its contents. If you prefer, you may move or copy the entire puzzle-1 directory
somewhere else on your computer.

Animation 482

Navigate into the checkpoints/puzzle-1 directory and install node_modules using
yarn:

$ cd checkpoints/puzzle-1

$ yarn

It’s normal to see tens of (yellow) warnings in the console as yarn installs your node_-
modules. Only (red) errors indicate a problem that likely needs resolving.

Once this finishes, choose one of the following to launch the app:

• yarn start - Start the Packager and display a QR code to open the app on your
phone

• yarn ios - Start the Packager and launch the app on the iOS simulator
• yarn android - Start the Packager and launch the app on the Android emulator

You should see a dark full-screen gradient (it’s subtle), which looks like this:

Animation 483

Project Structure

Let’s take a look at the files in the directory we copied:

1 ├── App.js

2 ├── README.md

3 ├── app.json

4 ├── assets

5 │ ├── logo.png

6 │ ├── logo@2x.png

7 │ └── logo@3x.png

8 ├── components

9 │ ├── Board.js

10 │ ├── Button.js

11 │ ├── Draggable.js

12 │ ├── Logo.js

13 │ ├── Preview.js

14 │ ├── Stats.js

15 │ └── Toggle.js

16 ├── package.json

17 ├── screens

18 │ ├── Game.js

19 │ └── Start.js

20 ├── utils

21 │ ├── api.js

22 │ ├── clamp.js

23 │ ├── configureTransition.js

24 │ ├── controlFlow.js

25 │ ├── formatElapsedTime.js

26 │ ├── grid.js

27 │ ├── puzzle.js

28 │ └── sleep.js

29 ├── validators

30 │ └── PuzzlePropType.js

31 └── yarn.lock

Animation 484

Here’s a quick overview of the most important parts:

• The App.js file is the entry point of our code, as with our other apps.
• The assets directory contains a logo for our puzzle app.
• The components directory contains all the component files we’ll use in this
chapter. Some of them have been written already, while others are scaffolds
that need to be filled out.

• The screens directory contains the two screen components in our app: the
Start screen and the Game screen. The App coordinates the transitions between
these two screens.

• The utils directory contains a variety of utility functions that let us build a
complex app like this more easily. Most of these functions aren’t specific to
React Native, so you can think of them as a “black box” –we’ll cover the relevant
APIs, but the implementation details aren’t too important to understand.

• The validators directory contains a custom propTypes function that we’ll use
in several different places.

Now that we’re familiar with the project structure, let’s dive into the code!

App

Let’s walk through how the App component coordinates different parts of the app.
Open up App.js.

App state

App stores the state of the current game and renders either the Start screen or the
Game screen. A “game” in our app is represented by the state of the puzzle and the
specific image used for the puzzle. To start a new game, the app generates a new
puzzle state and chooses a new random image.

If we look at the state object, we can see there are 3 fields:

Animation 485

checkpoints/puzzle-1/App.js

state = {

size: 3,

puzzle: null,

image: null,

};

• size - The size of the slider puzzle, as an integer.We’ll allow puzzles that are 3x3,
4x4, 5x5, or 6x6. We’ll allow the user to choose a different size before starting a
new game, and we’ll initialize the new puzzle with the chosen size.

• puzzle - Before a game begins or after a game ends, this value is null. If there’s
a current game, this object stores the state of the game’s puzzle. The state of
the puzzle should be considered immutable. The file utils/puzzle.js includes
utility functions for interacting with the puzzle state object, e.g. moving squares
on the board (which returns a new object).

• image - The image to use in the slider puzzle. We’ll fetch this image prior to
starting the game so that (hopefully) we can fully download it before the game
starts. That way we can avoid showing an ActivityIndicator and delaying the
game.

App screens

Our app will contain two screens: Start.js and Game.js. Let’s briefly look at each.

Start screen

Open Start.js. The propTypes have been defined for you:

Animation 486

checkpoints/puzzle-1/screens/Start.js

static propTypes = {

onChangeSize: PropTypes.func.isRequired,

onStartGame: PropTypes.func.isRequired,

size: PropTypes.number.isRequired,

};

When we write the rest of this component, we’ll be building the buttons that allow
switching the size of the puzzle board. We’ll receive the current size as a prop, and
call onChangeSize when we want to update the size in the state of App. We’ll also
build a button for starting the game. When the user presses this button, we’ll call the
onStartGame prop so that App knows to instantiate a puzzle object and transition to
the Game screen.

The state object for this component includes a field transitionState:

checkpoints/puzzle-1/screens/Start.js

state = {

transitionState: State.Launching,

};

This transitionState value indicates the current state of our state machine. Each
possible state is defined in an object called State near the top of the file:

checkpoints/puzzle-1/screens/Start.js

const State = {

Launching: 'Launching',

WillTransitionIn: 'WillTransitionIn',

WillTransitionOut: 'WillTransitionOut',

};

This object defines the possible states in our state machine. We’ll set the component’s
transitionState to each of these values as we animate the different views in our
component. We’ll then use transitionState in the rendermethod to determine how
to render the component in its current state.

Animation 487

We define the possible states as constants in State, rather than assigning
strings directly to transitionState, both to avoid small bugs due to typos
and to clearly document all the possible states in one place.

We can see that the Start screen begins in the Launching state, since transitionState
is initialized to State.Launching. The Start componentwill transition from Launching

when the app starts, to WillTransitionIn when we’re ready to fade in the UI, to
WillTransitionOut when we’re ready to transition to the Game screen.

We’ll use this pattern of State and transitionState throughout the components in
this app to keep our asynchronous logic clear and explicit.

Game screen

Now open Game.js. Again, the propTypes have been defined for you:

checkpoints/puzzle-1/screens/Game.js

static propTypes = {

puzzle: PuzzlePropType.isRequired,

image: Image.propTypes.source,

onChange: PropTypes.func.isRequired,

onQuit: PropTypes.func.isRequired,

};

The puzzle and image props are used to display the puzzle board. When we want
to change the puzzle, we’ll pass an updated puzzle object to App using the onChange
prop. We’ll also present a button to allow quitting the game. When the user presses
this button, we’ll call onQuit, initiating a transition back to the Start screen.

Like in Start.js, we’ll use a state machine to simplify our code:

Animation 488

checkpoints/puzzle-1/screens/Game.js

const State = {

LoadingImage: 'LoadingImage',

WillTransitionIn: 'WillTransitionIn',

RequestTransitionOut: 'RequestTransitionOut',

WillTransitionOut: 'WillTransitionOut',

};

We’ll cover these states in more detail when we build the screen.

Now that you have an overview of how the state and screens of our app will work,
we can dive in to building animations!

Building the Start screen

In order to build the Start screen, we’ll use the two main building blocks of
animation: LayoutAnimation and Animated. Each of these come with their own
strengths and weaknesses. With LayoutAnimationwe can easily transition our entire
UI, while Animated gives us more precise control over individual values we want to
animate.

Initial layout

Let’s use LayoutAnimation to animate the position of a logo from the center of the
screen to the top of the screen.

Initially we’ll show this:

Animation 489

Then we’ll animate the position of the logo to turn it into this:

Animation 490

We’re rendering placeholder buttons for now. We’ll style the buttons and
add some custom animations soon.

Open up Start.js. You’ll notice the component’s import statements, propTypes,
state, and styles are already defined.

Let’s start by returning the Logo and a few other components from our render

method. Add the following to render:

Animation 491

puzzle/screens/Start.js

// ...

render() {

const { size, onChangeSize } = this.props;

const { transitionState } = this.state;

return (

<View style={styles.container}>

<View style={styles.logo}>

<Logo />

</View>

<View>

<Toggle

options={BOARD_SIZES}

value={size}

onChange={onChangeSize}

/>

</View>

<View>

<Button title={'Start Game'} onPress={() => {}} />

</View>

</View>

);

}

// ...

After saving Start.js, you should see the end state of our animation:

Animation 492

We touched on LayoutAnimation in the second half of the “Core APIs” chapter, but
let’s revisit how it works before we use it.

LayoutAnimation

LayoutAnimation automatically animates the entire UI of our application from its
current layout to the next layout. Elements that change position or size will be
translated or scaled. Elements that are added or removed between layouts will be
animated too, and we can choose what this animation looks like.

We call LayoutAnimation.create to define an animation configuration, and then:

LayoutAnimation.configureNext to enqueue the animation to run the next time
render is called.

The LayoutAnimation.create API takes three parameters:

• duration - The duration of the animation

Animation 493

• easing - The curve of the animation.We choose from a predefined set of curves:
spring, linear, easeInEaseOut, easeIn, easeOut, keyboard.

• creationProp - The style to animate when a new element is added: opacity or
scaleXY.

The main advantages of LayoutAnimation are:

• We can animate our entire UI with a single function call, rather than starting
one or several animations for each individual component.

• We can animate flexbox layout attributes like justifyContent and alignItems,
so we don’t have to specify movement in terms of coordinates.

• The API fits nicely with React’s declarative rendering pattern – we specify
the start and end states of our UI by returning components from render as
we normally would, and LayoutAnimation figures out the details of how to
transition between these states.

The main disadvantages are:

• We have limited control over individual animations and individual compo-
nents, since every updated layout property of every component animates
simultaneously.

• We can only animate layout attributes, so if we want to animate other style
attributes like color or opacity we’ll need to use Animated.

Note that we’ve already added the boilerplate code to enable
LayoutAnimation on Android at the top of App.js.

puzzle/screens/Start.js

if (

Platform.OS === 'android' &&

UIManager.setLayoutAnimationEnabledExperimental

) {

UIManager.setLayoutAnimationEnabledExperimental(true);

}

As wementioned in the Core APIs chapter, this will only be necessary until
the LayoutAnimation implementation on Android matures.

Animation 494

Animating the logo

To animate our logo, we want to initially not render the components below it, then
start rendering them and enqueue an animationwith LayoutAnimation.configureNext.
Since the outer View component rendered from our Start component has justifyContent:
'space-around' in its style, adding more content below the logo will move the logo
up.

Our component starts in the Launching state, so let’s update render to only render
the View components below the logo when we’re not in the Launching state:

puzzle/screens/Start.js

// ...

render() {

const { size, onChangeSize } = this.props;

const { transitionState } = this.state;

return (

<View style={styles.container}>

<View style={styles.logo}>

<Logo />

</View>

{transitionState !== State.Launching && (

<View>

<Toggle

options={BOARD_SIZES}

value={size}

onChange={onChangeSize}

/>

</View>

)}

{transitionState !== State.Launching && (

<View>

<Button title={'Start Game'} onPress={() => {}} />

</View>

)}

Animation 495

</View>

);

}

// ...

When the app is in the Launching state, only the logo will appear. If we were to save
Start.js now, our app would render the logo in the center of the screen indefinitely.

When we shift the transitionState from Launching to WillTransitionIn, render()
will return the two View components below the logo. This will push the logo up
towards the top of the screen. We can use LayoutAnimation to animate the logo’s
movement and the other two components’ entrances.

Let’s write a componentDidMount method and call LayoutAnimation.configureNext
within it and set our transitionState to WillTransitionIn. We’ll also add a little
delay using await and our utility function sleep so we see the logo in the initial state
for a short period of time before starting the animation.

Add the following to Start.js:

puzzle/screens/Start.js

// ...

async componentDidMount() {

await sleep(500);

const animation = LayoutAnimation.create(

750,

LayoutAnimation.Types.easeInEaseOut,

LayoutAnimation.Properties.opacity,

);

LayoutAnimation.configureNext(animation);

this.setState({ transitionState: State.WillTransitionIn })

}

Animation 496

// ...

After saving Start.js, you should see the animation! The logo should move up
toward the top of the screen, and the “Choose Size” text and placeholder buttons
will fade in.

Awaiting LayoutAnimation

Suppose we want to change the timing of the animations so that the buttons don’t
fade in until after the logo finishing moving toward the top of the screen. To do this,
we’ll need to know when our LayoutAnimation completes.

We can use the second parameter of LayoutAnimation.configureNext(animation,
completionCallback), the completionCallback, to wait for an animation to finish.
However, as of React Native 0.52, this callback currently only works on iOS. To
overcome this limitation, we’re going to use a utility function that approximates
the completion callback on Android (we’re going to assume that the animation will
complete in the duration we specified for the animation, e.g. 750 milliseconds).

Since we’re going to use the same animation in several different places throughout
this app, the utility function can also encapsulate some of the animation’s config-
uration parameters. We’ll also use a promise-based API for our utility function for
convenience.

The utility function is a little tricky, so we’ve already written it for you in

configureTransition.js:

Animation 497

puzzle/utils/configureTransition.js

import { LayoutAnimation, Platform } from 'react-native';

export default function configureTransition(onConfigured = () => {}) {

const animation = LayoutAnimation.create(

750,

LayoutAnimation.Types.easeInEaseOut,

LayoutAnimation.Properties.opacity,

);

const promise = new Promise(resolve => {

// Workaround for missing LayoutAnimation callback support on Andro\

id

if (Platform.OS === 'android') {

LayoutAnimation.configureNext(animation);

setTimeout(resolve, 750);

} else {

LayoutAnimation.configureNext(animation, resolve);

}

});

onConfigured();

return promise;

}

If you don’t follow exactly what happens with the callback argument and
promise, that’s fine. The details of this aren’t important, and the need for
this function should go away in a subsequent React Native release.

We allow passing an onConfigured parameter so that we have a place to easily update
component state with setState between the time we call LayoutAnimation.create
and the timewe actually schedule the animationwith LayoutAnimation.configureNext.

Animation 498

If we call LayoutAnimation.configureNext before setState, most anima-
tions will still work correctly, but there are a few instances where it won’t
work on Android.

Let’s update componentDidMount in Start to use our configureTransition utility
function:

puzzle/screens/Start.js

// ...

async componentDidMount() {

await sleep(500);

await configureTransition(() => {

this.setState({ transitionState: State.WillTransitionIn });

});

// ...

}

// ...

When you save the app now, you should see the exact same animation as before.
The updated code is a bit simpler and handles the completion callback, so that’s how
we’ll use LayoutAnimation throughout the rest of the app.

Animating buttons

Now that we can wait for the LayoutAnimation to complete, let’s update the
animation of the buttons to fade in after the logo finishes moving. We could use
LayoutAnimation again, but instead we’re going to learn how to make the same fade
animation using the Animated API.

Animation 499

Animated

The Animated API lets us animate most style attributes of core components. While
LayoutAnimation is designed to automatically transition between two states, Animated
lets us fine-tune the timing and duration of individual style attributes. Although
Animated gives us more control than LayoutAnimation, it’s also more complex: we
must define which style attributes wewant to animate individually, and imperatively
call functions to start these animations.

There are two parts to Animated:

• Animated.Value - This is a class that wraps a primitive value (number, string,
etc) for use in component styles. The Animated API includes functions for
modifying the primitive value within the wrapper, e.g. Animated.add.

• Animated.createAnimatedComponent(Component) - Components must be spe-
cially wrapped with Animated.createAnimatedComponent in order to handle
Animated.Value in their styles. The Animated API exports a wrapped version
of some of the most common components: Animated.View, Animated.Text,
Animated.Image, and Animated.ScrollView. These are just for convenience –
Animated.View is equivalent to Animated.createAnimatedComponent(View).

Running animations

It’s time to make the fade animation for our buttons! Let’s begin by instantiating two
Animated.Value instances. One will represent the opacity of the Toggle component,
and the other will represent the opacity of the start Button component. While we
could animate both components with a single Animated.Value, by instead instan-
tiating one for each component, we can animate the components independently.
In our case, we’ll use an animation option called delay to stagger the animations
independently.

We’ll instantiate these animated values as instance properties of our Start compo-
nent. We’ll add them below where we instantiate the initial state:

Animation 500

puzzle/screens/Start.js

state = {

transitionState: State.Launching,

};

toggleOpacity = new Animated.Value(0);

buttonOpacity = new Animated.Value(0);

We initialize each Animated.Value with a primitive value of 0. For our animation,
this primitive value will represent that opacity of our components: 0 represents a
fully transparent style and 1 represents a fully opaque style.

To perform a fade-in animation, we instruct the Animated.Value to change its
primitive value from 0 to 1 over a some duration using an animation curve. There
are variety of different animation curves we can use to update the value:

• Animated.timing - This animates a value using an easing curve over a spec-
ified duration. E.g. Animated.timing(this.buttonOpacity, { toValue: 1,

duration: 500, easing: Easing.inOut(Easing.ease) }). The Easing API
provides most of the common easing curve functions used for animation. If we
don’t provide a value for easing, the default is Easing.inOut(Easing.ease),
which generally looks pretty good.

• Animated.spring - This animates a value using a simulated spring. The tension
and friction of the spring are customizable. E.g. Animated.spring(this.buttonOpacity,
{ toValue: 1, friction: 7, tension: 40 }).

• Animated.decay - This animates a value by simulating motion and kinetic
energy. The animated value will decay to 0, using the provided velocity and
deceleration. E.g. Animated.decay(this.buttonOpacity, { velocity: 1,

deceleration: 0.997 }).

Both Animated.timing and Animated.spring accept a delay option which will delay
when the animation begins. We’ll use this delay to stagger the animations.

Calling any of these animation functions returns an object with two methods:

Animation 501

• start(completionCallback?) - We must always start() an animation when
we want it to run (which is often immediately). We can optionally provide a
callback that’s invoked when the animation completes (or is stopped).

• stop() - We can force an animation to stop at any time by calling stop(). If we
passed a completionCallback to the start function, it will be invoked with {

finished: false }.

We’ll use Animated.timing for our animations, configuring the animations to last
for 500 milliseconds. We’ll set the first animation to start 500 milliseconds after
the LayoutAnimation finishes, and we’ll set the second animation to start 1000
milliseconds after.

puzzle/screens/Start.js

async componentDidMount() {

await sleep(500);

await configureTransition(() => {

this.setState({ transitionState: State.WillTransitionIn });

});

Animated.timing(this.toggleOpacity, {

toValue: 1,

duration: 500,

delay: 500,

useNativeDriver: true,

}).start();

Animated.timing(this.buttonOpacity, {

toValue: 1,

duration: 500,

delay: 1000,

useNativeDriver: true,

}).start();

}

Animation 502

Any time we configure an animation, we need to start it with .start(). In this case,
we do it right after calling Animated.timing.

If at any point you run an app and an animation doesn’t work, double check
that you’re calling .start()! It’s very easy to forget.

We’ll come back to useNativeDriver shortly.

Lastly, we need to update the render method to use these animated values. We
use animated values in the style prop of our components, e.g. style={{ opacity:

this.buttonOpacity }}, just like we would if we were using a primitive value
directly.

Using an Animated.Value within a component’s style only works if we’re using
Animated.View, Animated.Text, Animated.Image, Animated.ScrollView, or a com-
ponent created by calling Animated.createAnimatedComponent(Component) with an
existing component. For this reason, we’ll change some of our View components to
Animated.View now that we’re using styles that contain an Animated.Value.

puzzle/screens/Start.js

// ...

render() {

// ...

const toggleStyle = { opacity: this.toggleOpacity };

const buttonStyle = { opacity: this.buttonOpacity };

return (

<View style={styles.container}>

<View style={styles.logo}>

<Logo />

</View>

Animation 503

{transitionState !== State.Launching && (

<Animated.View style={toggleStyle}>

<Toggle

options={BOARD_SIZES}

value={size}

onChange={onChangeSize}

/>

</Animated.View>

)}

{transitionState !== State.Launching && (

<Animated.View style={buttonStyle}>

<Button title={'Start Game'} />

</Animated.View>

)}

</View>

);

}

// ...

Try it out

Save Start.js and reload the app. Now the logo should animate, then the toggle
buttons, then finally the start button at the bottom.

The end state should look the same as it did before:

Animation 504

Animated value performance

These animations should probably look pretty smooth on your device. Let’s briefly
discuss how they work under the hood.

Normally when we want to change how a component is rendered, we change either
the props or state of the component, and this triggers a re-render. However, re-
rendering 60 times per second (to achieve 60fps) is often too slow. Thus, animations
must happen outside of the lifecycle of our components.

You might have noticed that we didn’t store our Animated.Value instances in the
state of our Start component. The Animated.Value is a reference to a class instance
that wraps a primitive value. When we change the underlying primitive value with
Animated.timing and start, this doesn’t change the Animated.Value reference. Even
if we were to store the animated value in state, the component wouldn’t re-render
when we call Animated.timing or start.

Animation 505

Animated values can be stored in component state, even though they will
never trigger a re-render. By convention, animated values are either stored
in state or as instance properties. Both are common conventions – it’s up
to you which you prefer.

When we call Animated.start, the JavaScript animation driver (the thing that actu-
ally runs our animations) uses requestAnimationFrame to update our component’s
styles in away that doesn’t require a component to re-render (called setNativeProps)
every frame.

You may have noticed that we also added useNativeDriver to our animation
configurations. This option is purely for improved animation performance. This
option tells React Native to perform the animation solely on the native thread using
the native animation driver, rather than passing values back and forth between
JavaScript and React Native. We can only use useNativeDriver when animating
styles that don’t affect layout, such as opacity, backgroundColor, or transform. We
can’t use useNativeDriver when animating width or top, for example, since these
affect layout.

Advanced Animated.Value

Now that we’ve covered the basics of Animated.Value, we can try some more
advanced animations.

Let’s replace the placeholder buttons that sit below the logo on the Start screen with
some that look nicer:

Animation 506

So far when we’ve created buttons in this book, we’ve used TouchableOpacity and
TouchableHighlight. The animations for these are pre-defined to change the opacity
and background color of the button’s view. But what if we want a custom button-
press animation? In this section, we’ll use the Animated API to animate the border
color, text color, and scale of our own custom Button component.

Updating our buttons

We’re already rendering this Button in our Start screen, and it’s used within the
Toggle component, which we also render from Start. We’ll make the height, color,
font size, and border radius of the button configurable so that we can use the same
component in both places.

Open up components/Button.js. Once again, the import statements, propTypes, and
styles have been filled out for you. There’s also a render method that was used to
render our placeholder buttons, but we’ll replace that entirely.

Let’s begin by writing the constructor. Here, we’ll track whether or not the button

Animation 507

is currently pressed within the component’s state. We use the disabled prop to
determine if the component is currently selected (in our toggle component) or not.
We’ll also initialize a new Animated.Value to represent the color and scale of the
button, which we’ll store as this.value:

puzzle/components/Button.js

constructor(props) {

super(props);

const { disabled } = props;

this.state = { pressed: false };

this.value = new Animated.Value(getValue(false, disabled));

}

You’ll notice we call a utility function, getValue, to get the initialize the primitive
value wrapped by an Animated.Value. This function has already been written for
you at the top of the file:

puzzle/components/Button.js

const getValue = (pressed, disabled) => {

const base = disabled ? 0.5 : 1;

const delta = disabled ? 0.1 : 0.3;

return pressed ? base - delta : base;

};

This utility function returns a different number depending on the state and props of
the component. The exact numbers were chosen arbitrarily to make the animation
look nice, but let’s go into a little more detail about what these will be used for.

When we used Animated.Value for opacity previously (our components below the
logo), we used a value between 0 and 1 to represent the opacity. We were able to
use the Animated.Value directly, since opacity is also a number between 0 and 1.
In this case, however, we want to animate a color value, rather than a number.
An Animated.Value always wraps a primitive number value, but we can use the

Animation 508

interpolatemethod of an animated value to interpolate the number into a different
range (including a range of colors!). For example, we could use 0 to represent black
and 1 to represent white, and interpolate any value between 0 and 1 into a gray color
in the range between black and white.

For this component, we’ll be using a number between 0.1 and 1 to represent the
various visual states of our button. The exact number isn’t important, since we’re
mapping it into a different range. In this case, lower numbers will render our
component smaller and dimmer, and higher numbers will render it bigger and
brighter – but we could’ve made it so that higher numbers render the button smaller.

We want to animate the button whenever the disabled prop or the pressed state
changes. In order to make the button look and feel good, we’ll animate it to a slightly
different size and color for each combination of disabled and pressed, and we’ll call
getValue to get the correct value for each combination.

The utility function is useful since we don’t need to remember which values
to use for each combination of disabled and pressed. Since getValue is a
pure function, we’ll always get the same result for any given pressed and
disabled arguments we pass.

Next, we’ll use the componentDidUpdate method to update this Animated.Value

whenever the component’s state or props change.Wewant to start a new Animated.timing

animation whenever disabled or pressed change, and we’ll use getValue to deter-
mine the desired end value of our Animated.Value for the animation:

puzzle/components/Button.js

componentDidUpdate(prevProps, prevState) {

if (

this.props.disabled !== prevProps.disabled ||

this.state.pressed !== prevState.pressed

) {

Animated.timing(this.value, {

duration: 200,

toValue: getValue(this.state.pressed, this.props.disabled),

easing: Easing.out(Easing.quad),

}).start();

Animation 509

}

}

We’ll also create functions for updating the pressed state, which we’ll soon use in
the render method:

puzzle/components/Button.js

handlePressIn = () => {

this.setState({ pressed: true });

};

handlePressOut = () => {

this.setState({ pressed: false });

};

Rendering with Animated.Value

Now we’re ready to render our button.

We’ll start by rendering a TouchableWithoutFeedback to handle touches. This is
similar to TouchableOpacity and TouchableHighlight, except that there’s no visual
feedback for the user when tapped. That’s what we want in this case, since we’re
defining our own visual feedback with the Animated API.

In addition to the onPress prop that we’ve used with TouchableOpacity, the
TouchableWithoutFeedback components allows us to pass props that handle the
pressing down and releasing of the button separately. The onPressIn prop fires when
we touch the button, and the onPressOut prop fires when we release the button.
We can use these to update the visual/animation state of the button by updating
pressed in state. It’s best to use onPressIn and onPressOut for visual feedback, and
to continue using onPress for the behavior of a button (calling the onPress function
prop passed into Button).

We want to render a TouchableWithoutFeedback, passing it an onPress, onPressIn,
and onPressOut prop. Go ahead and delete the existing render method (we don’t need
it anymore), and replace it with the following one:

Animation 510

puzzle/screens/Start.js

// ...

render() {

const {

props: { title, onPress, color, height, borderRadius, fontSize },

} = this;

// ...

return (

<TouchableWithoutFeedback

onPress={onPress}

onPressIn={this.handlePressIn}

onPressOut={this.handlePressOut}

>

{/* ... */}

</TouchableWithoutFeedback>

);

}

// ...

Note that we propagate the onPress prop from our Button component into the
TouchableWithoutFeedback.

Within the TouchableWithoutFeedback, we’ll render an Animated.View and an
Animated.Text component:

Animation 511

puzzle/screens/Start.js

// ...

render() {

// ...

return (

<TouchableWithoutFeedback

onPress={onPress}

onPressIn={this.handlePressIn}

onPressOut={this.handlePressOut}

>

<Animated.View style={/* ... */}>

<Animated.Text style={/* ... */}>

{title}

</Animated.Text>

</Animated.View>

</TouchableWithoutFeedback>

);

}

// ...

For both the Animated.View and Animated.Text, we want to use this.value to
modify their color – we can do this with this.value.interpolate. As mentioned
previously, the interpolate method lets us interpolate an Animated.Value into a
different range. In this case, we’ll interpolate a number between 0 and 1 into a color
between black and the color prop, where 0 represents black and 1 represents fully
colored. In render(), let’s make a new variable above the return statement to hold
this color:

Animation 512

puzzle/components/Button.js

const animatedColor = this.value.interpolate({

inputRange: [0, 1],

outputRange: ['black', color],

});

We can use the output of this.value.interpolate as a style attribute for any
attribute that accepts a color. Similarly, we’ll interpolate this.value into a suitable
range to update the scale of the button:

puzzle/components/Button.js

const animatedScale = this.value.interpolate({

inputRange: [0, 1],

outputRange: [0.8, 1],

});

In this case, 0 will map to 0.8 and 1 will map to 1. These numbers were chosen by
testing the animation and trying a few different values to see what looked best.

Next we’ll create a style object for our Animated.View:

puzzle/components/Button.js

const containerStyle = {

borderColor: animatedColor,

borderRadius,

height,

transform: [{ scale: animatedScale }],

};

Transform
By using the transform attribute of a component’s style, we can apply a transfor-
mation matrix to the component before rendering it. This allows us to scale, rotate,
translate, or skew the component.

Transformations applied this way don’t affect the layout of other components. Even

Animation 513

if wemake a component bigger by setting a { scale: 2 } transformation, the sibling
and parent components will remain in the exact same position. If components
overlap after a transformation is applied, the component rendered last will render
on top (unless zIndex is used for re-ordering).

Because transform doesn’t affect the layout of our components, we’re able to
animate it with useNativeDriver for improved performance. For this reason, we
generally use transform whenever we can for animations. Rather than animating
top or left, we can translate. Rather than animating width and height, consider a
scale transformation. Some of the timewe’ll still need to animate layout properties,
but it’s good to consider whether a transform can accomplish the same thing.

If you’re coming from CSS, you might be familiar with the transform attribute
already. The idea is the same, although the API is fairly different. The API in React
Native might seem unusual: the transform attribute takes an array of objects, each
with a single key. This object-based description of transformations, e.g. { scale: 2

}, lets React Native expose a type-safe API when used with the Flow language. By
contrast, the API in CSS is string-based, e.g. scale(2), which can’t be fully type-
checked in Flow.We can’t simplify the API by combining the array of objects into a
single object, since it’s possible to apply several of the same kind of transformation,
e.g. [{ scale: 2 }, { rotateX: '45deg' }, { scale: 1.2 }].

To see all the transformations you can apply to components, check out the React
Native documentation.

https://facebook.github.io/react-native/docs/transforms.html

And a style object for our Animated.Text:

puzzle/components/Button.js

const titleStyle = {

color: animatedColor,

fontSize,

};

Update the return value as follows:

https://facebook.github.io/react-native/docs/transforms.html
https://facebook.github.io/react-native/docs/transforms.html

Animation 514

puzzle/components/Button.js

return (

<TouchableWithoutFeedback

onPress={onPress}

onPressIn={this.handlePressIn}

onPressOut={this.handlePressOut}

>

<Animated.View style={[styles.container, containerStyle]}>

<Animated.Text style={[styles.title, titleStyle]}>

{title}

</Animated.Text>

</Animated.View>

</TouchableWithoutFeedback>

);

Remember to use wrapped components like Animated.View when working
with animations! It’s very easy to forget. If you pass an Animated.Value in
the style of a normal View, you’ll get seemingly-unrelated error messages
that are hard to decipher.

Try it out

Save Button.js. Once the app reloads, you should see the button component we just
wrote on the Start screen. We use it both for choosing the size of the puzzle and for
the “Start Game” button:

Animation 515

If you try tapping the button, you should see the border color, text color, and scale
animate when you press and when you release your finger.

Starting the game

The last thing we need to do on the start screen is enable the transition to the game
screen. We’ll transition when the user taps the “Start Game” button at the bottom of
the screen.

Open up Start.js again. We’re going to add a function handlePressStart that
sets the transitionState to WillTransitionOut, and configures a LayoutAnimation
using the configureTransition utility functionwewrote earlier. After the animation
completes we’ll call the onStartGame prop, which tells the App to unmount this
screen and render the game screen instead. Add the following function to the Start
component:

Animation 516

puzzle/screens/Start.js

handlePressStart = async () => {

const { onStartGame } = this.props;

await configureTransition(() => {

this.setState({ transitionState: State.WillTransitionOut });

});

onStartGame();

};

Then we’ll update the render method with two new things.

• We’ll pass the handlePressStart function to our Button component’s onPress
prop.

• If we’re in the WillTransitionOut state, we don’t want to render anything. This
will cause the components on the screen to fade out, due to the LayoutAnimation
we configured. In order to achieve this, we’ll only render our components when
transitionState !== State.WillTransitionOut.

Update the render method to the following:

puzzle/screens/Start.js

render() {

const { size, onChangeSize } = this.props;

const { transitionState } = this.state;

const toggleStyle = { opacity: this.toggleOpacity };

const buttonStyle = { opacity: this.buttonOpacity };

return (

transitionState !== State.WillTransitionOut && (

<View style={styles.container}>

<View style={styles.logo}>

<Logo />

Animation 517

</View>

{transitionState !== State.Launching && (

<Animated.View style={toggleStyle}>

<Toggle

options={BOARD_SIZES}

value={size}

onChange={onChangeSize}

/>

</Animated.View>

)}

{transitionState !== State.Launching && (

<Animated.View style={buttonStyle}>

<Button

title={'Start Game'}

onPress={this.handlePressStart}

/>

</Animated.View>

)}

</View>

)

);

}

Try it out

Save Start.js. Once the app reloads, tap the “Start Game” button. You should see
the components on this screen fade out.

Wrapping up the Start screen

We’ve successfully created the start screen for our puzzle game. To do this we used
two types of animations:

• LayoutAnimation - These animations automatically transition our UI between
two states. This is especially useful when animating many components and

Animation 518

style attributes at once, or when we don’t know the exact pixel values to use
in the animation (e.g. with flex-based layouts). We can only animate layout
attributes, such as width or flex. If we want to animate non-layout attributes
like color, we’ll need to use Animated.

• Animated - These animations offer us more control than LayoutAnimation, but
also have a more complex API. We have to specify the exact starting and ending
value for each animation, and start each animation at the appropriate time. We
use these animations when animating multiple components independently, or
when animating non-layout attributes like color. We can use useNativeDriver
to improve the performance of our non-layout animations.

Next, we’ll use these same animation techniques to make the Game screen.

Building the Game screen

The Game screen shows the current puzzle, along with a preview of the completed
puzzle in the top left and a timer and moves counter in the top right:

Animation 519

Game lifecycle

We’re going to combine a lot of different animations to show and hide the game
screen. Since these are all asynchronous and will span multiple components, the code
can easily get complicated without careful planning. It’s important that we have a
clear understanding of how the animations should work before we attempt to code
them.

Let’s think about the “lifecycle” of the Game screen. There are two phases of the
lifecycle: the “transition in” phase where the screen transitions into view, and the
“transition out” phase where it transitions out of view.

The Game screen renders the Board component as a child. The Board handles a lot of
the animations. In the “transition in” phase, we must first display the Game before
we display the Board. In the “transition out” phase, we must hide the Board before
we hide the Game – we do this to give the board time to animate before unmounting
it.

Animation 520

The “transition in” phase

Let’s consider the following diagram of the “transition in” phase:

Here’s what needs to happen at each step:

1. After the user presses the start button on the Start screen, the Start screen fades
out, and the App renders the Game screen. The App passes an image and a puzzle state
as props to the Game.

The possible states of the Game screen are:

puzzle/screens/Game.js

const State = {

LoadingImage: 'LoadingImage',

WillTransitionIn: 'WillTransitionIn',

RequestTransitionOut: 'RequestTransitionOut',

WillTransitionOut: 'WillTransitionOut',

};

The Game begins in either the LoadingImage or WillTransitionIn state.

2. Since the image may not have fully downloaded yet, it may be null to begin
with. If that’s the case, the Game begins in the LoadingImage state and renders an
ActivityIndicator until the image loads:

Animation 521

3. Otherwise, the Game begins in the WillTransitionIn state. In this state, the Game

will render the top and bottom of the screen, along with an empty game board in the
middle:

Animation 522

4. After the WillTransitionIn state, it’s the Board component’s turn to animate
things. The Board component handles animating the puzzle pieces into view:

Animation 523

The possible states of the Board component are:

puzzle/components/Board.js

const State = {

WillTransitionIn: 'WillTransitionIn',

DidTransitionIn: 'DidTransitionIn',

DidTransitionOut: 'DidTransitionOut',

};

The Board begins in the WillTransitionIn state, and starts animating each puzzle
piece from beneath the screen into the center of the screen. Once these animations
finish, it will enter the DidTransitionIn state and call its onTransitionIn prop
(passed in from Game).

5. The Game listens the Board to call onTransitionIn. Once it’s called, the Game will
start the timer in the top right. Now the game has begun!

Animation 524

The “transition out” phase

Now let’s consider how the Game and Board transition out of view:

1. Once the user completes the puzzle or presses the quit button, the game enters the
RequestTransitionOut state. In this state, the Game tells the Board to do any cleanup
it needs by passing the prop teardown={true}.

2. Upon receiving the teardown prop, the Board transitions animates each puzzle
piece out of view. Once this cleanup is done, the Board will transition to the
DidTransitionOut state and call onTransitionOut. We do this to give the Board a
chance to animate before we unmount the component:

Animation 525

3. When the onTransitionOut prop is called, the Game transitions to its final state,
WillTransitionOut. In the WillTransitionOut state, the Gamewill fade out the entire
UI in preparation for displaying the Start screen again.

Transitioning in and out

Now that we have a plan, we can start our implementation! Open screens/Game.js.
Once again, some of the skeleton of the screen has already been written for you.

You can ignore the handlePressSquare function for now; we’ll come back
to that later.

Let’s begin bywriting the constructor for the Game screen. Herewe’ll use the existence
of the image prop to determine whether we should begin in the LoadingImage or
WillTransitionIn state. We’ll run our configureTransition utility to enqueue a
LayoutAnimation on initial render. This covers step 1 of the “transition in” phase
described previously.

Animation 526

Open up Game.js and add the following constructor:

puzzle/screens/Game.js

constructor(props) {

super(props);

const { image } = props;

this.state = {

transitionState: image

? State.WillTransitionIn

: State.LoadingImage,

moves: 0,

elapsed: 0,

previousMove: null,

image: null,

};

configureTransition();

}

If the game begins in the LoadingImage state, then we want to watch for when the
image prop changes so we know when to transition to the WillTransitionIn state.
This is step 2 of the “transition in”. Add the following componentDidUpdate to do this:

puzzle/screens/Game.js

componentDidUpdate() {

const { image } = this.props;

const { transitionState } = this.state;

if (image && transitionState === State.LoadingImage) {

configureTransition(() => {

this.setState({ transitionState: State.WillTransitionIn });

});

}

}

Animation 527

We can update the rendermethod to handle these first few states. If we’re still loading
an image (Game is in the LoadingImage state) we want to show an ActivityIndicator.
If we’ve finished loading the image, we want to show the stats and image preview at
the top of the screen. Let’s update our render method to the following:

puzzle/screens/Game.js

// ...

render() {

const { puzzle, puzzle: { size }, image } = this.props;

const {

transitionState,

moves,

elapsed,

previousMove,

} = this.state;

return (

<View style={styles.container}>

{transitionState === State.LoadingImage && (

<ActivityIndicator

size={'large'}

color={'rgba(255,255,255,0.5)'}

/>

)}

{transitionState !== State.LoadingImage && (

<View style={styles.centered}>

<View style={styles.header}>

<Preview image={image} boardSize={size} />

<Stats moves={moves} time={elapsed} />

</View>

{/* ... */}

</View>

)}

</View>

);

Animation 528

}

// ...

Try it out

Save Game.js and reload the app. If you tap the “Start Game” button, you should see
the start screen fade out and the first few components of the game screen fade in.

Transitioning in and out, continued

Now let’s add the game board. The Board component will handle its own transitions
once rendered from Game. Rendering the Board completes step 3 of the “transition
in” phase, and step 4 will be completed within the Board component. Let’s create the
methods we need to pass as props to the Board component. We’ll start by creating a
method for handling when the Board finishes transitioning.

Animation 529

The timer in the top right of the screen counts how much time has elapsed since
the game started. Once the board fully transitions in, it will call its onTransitionIn
prop. That’s when we want to start the timer. We’ll use setInterval to increment
state.elapsed every second. Let’s add a handleBoardTransitionInmethod that we
can pass to onTransitionIn to do this:

puzzle/screens/Game.js

handleBoardTransitionIn = () => {

this.intervalId = setInterval(() => {

const { elapsed } = this.state;

this.setState({ elapsed: elapsed + 1 });

}, 1000);

};

This completes the last step of the transition in phase. However, we’ll want to add a
few more things before we update the render method. Let’s consider how the Game
screen should transition out.

The game ends either when the puzzle is finished or when the user presses the “Quit”
button. In both of these scenarios, we want to enter the transitionState called
RequestTransitionOut. In this state, we give the Board time to run its transition
animation.

Let’s add a requestTransitionOut function to Game that handles updating transitionState.
We also want to stop the timer in the top right once we call this:

puzzle/screens/Game.js

requestTransitionOut = () => {

clearInterval(this.intervalId);

this.setState({ transitionState: State.RequestTransitionOut });

};

Pressing the quit button should also set the transitionState to RequestTransitionOut.
We can call the same requestTransitionOut function for this. When the quit button

Animation 530

is pressed, we’ll handle it with a new function handlePressQuit. We’ll use the Alert
API, which we covered in the “Core APIs” chapter, to ask the user if they are sure
they want to quit. Add the following function to Game:

puzzle/screens/Game.js

handlePressQuit = () => {

Alert.alert(

'Quit',

'Do you want to quit and lose progress on this puzzle?',

[

{ text: 'Cancel', style: 'cancel' },

{

text: 'Quit',

style: 'destructive',

onPress: this.requestTransitionOut,

},

],

);

};

That handles step 1 of the “transition out” phase. The Board component will handle
step 2 internally. Once the board transitions out (remember, we had to give it
time to transition before unmounting), it will call its onTransitionOut prop. When
this happens, we want to fade out the components on this game screen. We can
do that using our configureTransition utility function. After that we want to
call the onQuit() prop, which will return us to the start screen. Let’s write a
handleBoardTransitionOut function which we’ll pass to onTransitionOut:

Animation 531

puzzle/screens/Game.js

handleBoardTransitionOut = async () => {

const { onQuit } = this.props;

await configureTransition(() => {

this.setState({ transitionState: State.WillTransitionOut });

});

onQuit();

};

That completes the “transition out” phase! Now we can update the render method to
render both the Board and the “Quit” Button.

Before returning anything, we’ll first check if we’re in the WillTransitionOut state
– if we are, we don’t want to render anything, since we want our LayoutAnimation
to fade the entire screen out. We also need to remember to pass the teardown prop
to the Board when Game is in the RequestTransitionOut state.

Let’s update the render method to the following:

puzzle/screens/Game.js

render() {

const { puzzle, puzzle: { size }, image } = this.props;

const {

transitionState,

moves,

elapsed,

previousMove,

} = this.state;

return (

transitionState !== State.WillTransitionOut && (

<View style={styles.container}>

{transitionState === State.LoadingImage && (

<ActivityIndicator

Animation 532

size={'large'}

color={'rgba(255,255,255,0.5)'}

/>

)}

{transitionState !== State.LoadingImage && (

<View style={styles.centered}>

<View style={styles.header}>

<Preview image={image} boardSize={size} />

<Stats moves={moves} time={elapsed} />

</View>

<Board

puzzle={puzzle}

image={image}

previousMove={previousMove}

teardown={

transitionState === State.RequestTransitionOut

}

onMoveSquare={this.handlePressSquare}

onTransitionOut={this.handleBoardTransitionOut}

onTransitionIn={this.handleBoardTransitionIn}

/>

<Button title={'Quit'} onPress={this.handlePressQuit} />

</View>

)}

</View>

)

);

}

Try it out

Save Game.js and reload the app. If you tap the “Start Game” button, you should see
the start screen fade out and the game screen fade in:

Animation 533

The board won’t render yet, but we’ll add that in the next chapter. If you tap the
“Quit” button, you should see a dialog with options to “Cancel” or “Quit”:

Animation 534

Thesewon’t do anything yet though, since the Boardwill never call its onTransitionOut
prop.

That completes the Game screen, for now. In the next chapter, we’ll build the Board.

Summary

In this chapter, we used the two main animation APIs included in React Native:
Animated and LayoutAnimation. We used LayoutAnimation to move components
around the screen, and to fade components into and out of view. We used Animated

to animate non-layout styles like colors and when we wanted more control over
individual animations.

In the next chapter (“Gestures”), we’ll finish our puzzle game. We’ll build the Board
component and allow the user to rearrange puzzle pieces by dragging. Gestures rely
heavily on Animated, so we’ll see a few more ways we can use the Animated API,
while ensuring smooth, high-performance animations.

Gestures
Gestures are fundamental to building mobile apps. Well-designed gestures can make
mobile apps feel intuitive and easy to use. Just like with animations, we often use
gestures to imitate movement in the real world or to build interactivity similar
to familiar physical objects. For this reason, most gestures are accompanied by
animations – physical objects rarely teleport from one place to another, so neither
should components in our UI. We can leverage the Animated API from the previous
chapter to build gestures that feel natural.

Simple gestures are supported out-of-the-box by React Native components. Whenwe
want to add a tap gesture, we can use TouchableOpacity or TouchableHighlight. For
more advanced gestures, however, we’ll need to create our own components using
lower-level APIs. In this chapter we’ll explore gestures by adding an interactive game
board to the puzzle app we started in the previous chapter.

Picking up where we left off

We successfully built the start screen and we started the game screen for our puzzle
app. Next, we’re going to add the interactive board.

Gestures 536

This is a code checkpoint. If you haven’t been coding along with us
through the Animations chapter but would like to start now, we’ve in-
cluded a snapshot of our current progress in the checkpoints/puzzle-2

directory of the sample code. You can follow along by working directly
within the checkpoints/puzzle-2 directory, although you’re welcome to
copy it somewhere else on your computer.

To get started, navigate into that directory and install node_modules using
yarn.

$ cd checkpoints/puzzle-2

$ yarn

It’s normal to see tens of (yellow) warnings in the console as yarn installs
your node_modules. Only (red) errors indicate a problem that likely needs
resolving.

Building the board

Our Board component is responsible for animating the puzzle pieces into view when
the components mount, handling the drag gesture as the user moves the pieces, and
animating the pieces out of view when the game ends.

The Board component has already been started for you. Let’s take a look at what’s
already there. Open Board.js.

Transition states

Just like with the Start and Game screens we built in the previous chapter, we’ll use a
transitionState prop to control the various transitions in the Board. These are the
states of the board:

Gestures 537

puzzle/components/Board.js

const State = {

WillTransitionIn: 'WillTransitionIn',

DidTransitionIn: 'DidTransitionIn',

DidTransitionOut: 'DidTransitionOut',

};

The Board begins in the WillTransitionIn state, and starts animating each puzzle
piece from beneath the screen into the center of the screen:

Once these animations finish, it will enter the DidTransitionIn state and call its
onTransitionIn prop (passed in from Game). At this point, the puzzle pieces become
interactive:

Gestures 538

The Game will tell the board when the game is finished and it’s time to cleanup by
passing the teardown prop. Upon receiving the teardown prop, the Board transition
animates each puzzle piece out of view:

Gestures 539

Once this cleanup is done, the Board will transition to the DidTransitionOut state
and call onTransitionOut.

Board props

Next lets look at the propTypes for this component:

checkpoints/puzzle-2/1/components/Board.js

static propTypes = {

puzzle: PuzzlePropType.isRequired,

teardown: PropTypes.bool.isRequired,

image: Image.propTypes.source,

previousMove: PropTypes.number,

onMoveSquare: PropTypes.func.isRequired,

onTransitionIn: PropTypes.func.isRequired,

onTransitionOut: PropTypes.func.isRequired,

};

Gestures 540

The board is passed the current state of the puzzle, the image, and the previousMove.
From these, the board can determine how to render the puzzle. The board will never
modify the state of the puzzle – instead, the board will call onMoveSquare to inform
the Game component that a piece has been moved.

We use a PropTypes.shape to validate the fields within the puzzle object:

puzzle/validators/PuzzlePropType.js

import PropTypes from 'prop-types';

export default PropTypes.shape({

size: PropTypes.number.isRequired,

empty: PropTypes.number.isRequired,

board: PropTypes.arrayOf(PropTypes.number.isRequired).isRequired,

});

The puzzle object contains the size of the board, the arrangement of pieces on
the board, and an indicator recording which piece is the empty piece. Each piece
is represented by a number. In its finished state, the piece numbers will be properly
sorted from small to large within board. In other words, the number represents the
“correct” or “final” position of the piece in the completed puzzle. The empty value
refers to the number of a piece (not to an index in the board array).

If we overlay these numbers on top of the puzzle board, we can see how each number
corresponds with a piece:

Gestures 541

For this example, the initial state of a puzzle object is:

{

size: 3,

empty: 8,

board: [7, 3, 1, 6, 8, 2, 0, 4, 5]

}

When completed, the puzzle object will be:

{

size: 3,

empty: 8,

board: [0, 1, 2, 3, 4, 5, 6, 7, 8]

}

We’ll use the piece numbers directly when rendering the board. We’ll use utility
functions for determining anything else from the puzzle object.

Gestures 542

If you recall from the previous chapter, each puzzle uses a random image fetched
from a remote API. When we render the puzzle, we’ll need to “split up” the image
into a grid of puzzle pieces.

Wewon’t actuallymodify the raw image data – insteadwe’ll render the same image
multiple times, once for each piece, and offset the image’s position. We can use a
style with overflow: hidden to hide the excess parts of the image we don’t want
to show. We’ll use the piece’s number to calculate the position of the image for that
piece.

You’ll notice at the top of the file we import two utility functions:

import { availableMove, getIndex } from '../utils/puzzle';

We’ll use availableMove to determine which directions the user may drag any given
piece. And we’ll use getIndex to determine the current position of any given piece.

The other props, teardown, onTransitionIn, and onTransitionOut, are all used to
communicate state changes between the Game and Board components.

Initializing the board

We’ll start by writing a simplified version of the game board where the pieces don’t
move. After we have the pieces showing up in the correct positions, we’ll add the
animation and gestures.

Each piece on the board will use an Animated.Value to represent its top, left, and
scale. This gives us fine-grained control over the animations of each piece. We can
use a helper function, calculateItemPosition, already imported at the top of the file
to determine the correct starting top and left position of each piece.

Our constructor needs to do 2 things:

• Initialize the transitionState to WillTransitionIn

• Create an Animated.Value for the top, left, and scale of each piece

Add the following constructor to components/Board.js:

Gestures 543

checkpoints/puzzle-2/1/components/Board.js

constructor(props) {

super(props);

const { puzzle: { size, board } } = props;

this.state = { transitionState: State.WillTransitionIn };

this.animatedValues = [];

board.forEach((square, index) => {

const { top, left } = calculateItemPosition(size, index);

this.animatedValues[square] = {

scale: new Animated.Value(1),

top: new Animated.Value(top),

left: new Animated.Value(left),

};

});

}

Recall from the previous chapter that an Animated.Value wraps a number.
We need to instantiate a separate Animated.Value for the top, left, and
scale of each puzzle piece on the board, since we want to animate all of
these values independently.

We’ll render each puzzle piece with an absolute position, so that it renders at the
top-left of the board. Then we’ll use the top and left animated values to position
the piece relative to the top-left of the board.

Now that we have our constructor, we’ll also need a componentDidMount method
where we:

• Start the initial animation (where the puzzle pieces fly onto the board)
• Set transitionState to DidTransitionIn once the animation completes

Gestures 544

• Call onTransitionIn to inform the Game that the transition animation has
completed and the game has begun

We’ll handle starting the transition animation later in the chapter, so for now,
let’s add a componentDidMount method that sets the transitionState and calls
onTransitionIn:

checkpoints/puzzle-2/1/components/Board.js

async componentDidMount() {

const { onTransitionIn } = this.props;

this.setState({ transitionState: State.DidTransitionIn });

onTransitionIn();

}

Rendering the board

Next, let’s render each piece on the game board. In order to determine the proper size
of the board and each piece, we’ll use two utility functions that have already been
imported at the top of the file:

• calculateContainerSize() - This function returns the size to render the board,
in pixels. Since the board is a square, we’ll use this size for both the width and
height.

• calculateItemSize(size) - This function uses puzzle.size to divide the board
into an even number of rows and columns. We’ll use the returned pixel size for
the width and height of each piece.

We’ll represent the board with a View. We’ll map each puzzle piece in puzzle.board

into an Animated.View that contains an Image.

Add the following render method to components/Board.js:

Gestures 545

checkpoints/puzzle-2/1/components/Board.js

render() {

const { puzzle: { board } } = this.props;

const { transitionState } = this.state;

const containerSize = calculateContainerSize();

const containerStyle = {

width: containerSize,

height: containerSize,

};

return (

<View style={[styles.container, containerStyle]}>

{transitionState !== State.DidTransitionOut &&

board.map(this.renderSquare)}

</View>

);

}

Notice that we map each piece in the board through this.renderSquare. Let’s write
the renderSquare method now. This method is called with two arguments:

• square - The numeric value of the piece in puzzle.board

• index - The index of the square within the puzzle.board array

In other words, the square represents the “correct” position of the puzzle piece
(within the original image), while the index represents the current position of the
puzzle piece (within the rearranged image).

When the board is in the DidTransitionOut state, we don’t render any
pieces. This shouldn’t be necessary, since the pieces should have already
animated off-screen. However, there’s a bug that occurs when combining
Animated and useNativeDriver that causes the pieces to render without
their transform styles.

Gestures 546

Let’s write renderSquare now.We’ll start by declaring the method and destructuring
the props and state we’ll need:

checkpoints/puzzle-2/1/components/Board.js

renderSquare = (square, index) => {

const { puzzle: { size, empty }, image } = this.props;

const { transitionState } = this.state;

If the square is the empty square of the puzzle (puzzle.empty), then we shouldn’t
render it:

checkpoints/puzzle-2/1/components/Board.js

renderSquare = (square, index) => {

const { puzzle: { size, empty }, image } = this.props;

const { transitionState } = this.state;

if (square === empty) return null;

Next, we’ll call calculateItemSize to get the pixel size of the puzzle piece. This value
will be the same for every piece:

checkpoints/puzzle-2/1/components/Board.js

if (square === empty) return null;

const itemSize = calculateItemSize(size);

We can use the itemSize to create a style, itemStyle, for the Animated.View that
we’ll render. The view should have a width and height equal to itemSize, and use
a transform to correctly position it on the board. This is where the Animated.Value
array we set up earlier comes in:

Gestures 547

checkpoints/puzzle-2/1/components/Board.js

const itemSize = calculateItemSize(size);

const itemStyle = {

position: 'absolute',

width: itemSize,

height: itemSize,

overflow: 'hidden',

transform: [

{ translateX: this.animatedValues[square].left },

{ translateY: this.animatedValues[square].top },

{ scale: this.animatedValues[square].scale },

],

};

Note that we use a transform with translateX and translateY, instead
of left and top. If you recall from the previous chapter, this allows us to
animate these values with useNativeDriver for improved performance. In
this chapter, we use the names top and left to refer to a piece’s position
for simplicity, even though we’re actually setting the translateX and
translateY.

Within the Animated.View that uses this style, we’ll render the image of the puzzle
piece. With some clever math, we can offset the image to display the correct portion
for each piece:

Gestures 548

checkpoints/puzzle-2/1/components/Board.js

const imageStyle = {

position: 'absolute',

width: itemSize * size + (itemMargin * size - 1),

height: itemSize * size + (itemMargin * size - 1),

transform: [

{

translateX:

-Math.floor(square % size) * (itemSize + itemMargin),

},

{

translateY:

-Math.floor(square / size) * (itemSize + itemMargin),

},

],

};

The exact calculations here and elsewhere in the chapter are specific to
this game, so we won’t cover them in much detail. However, animation
and gesture code in general tends to rely on manual calculations, so you
may find it useful to try to understand the calculations and utility functions
in this chapter.

Lastly, we can put everything together by rendering an Animated.View and an Image:

Gestures 549

checkpoints/puzzle-2/1/components/Board.js
return (

<Animated.View key={square} style={itemStyle}>

<Image style={imageStyle} source={image} />

</Animated.View>

);

};

Try it out!

Save Board.js. After the app reloads, press the start button, and you should see the
board fade in!

Making pieces draggable

Now that we’re rendering our puzzle pieces, we can focus onmaking them draggable.
In order to do this, we’ll need to learn how to use the Gesture Responder System.

Gestures 550

Gesture Responder System

React Native provides the Gesture Responder System for building complex interac-
tions like dragging. The Gesture Responder System gives us fine-grained control over
which components should receive and respond to touch events.

Each time the user touches the screen, moves their finger, or lifts their finger, the
operating system records an independent event called a “touch event.” Interpreting
one or more of these independent touch events results in a gesture. A tap gesture
may consist of the user touching the screen and lifting their finger immediately. A
drag gesture may consist of a user touching the screen, moving their finger around
the screen, and then lifting their finger.

Touch events can interact in complex ways in mobile apps. Imagine a horizontally
draggable slider within a vertical scrollview – how do we determine which finger
movements should affect the slider and which should affect the scrollview? The
Gesture Response System gives us a set of callbacks which help us handle the right
touch events from the right component.

Responder lifecycle

Let’s look at how touch events flow between components in the responder system.

At its core, the responder system determines which view owns the global “interaction
lock” at any given time. When granted the interaction lock, a view is known as
the “responder”, since it responds to touch events. Generally the responder view
should show visual feedback, such as highlighting or moving. While a touch gesture
is occuring, the interaction lock may be transferred to an ancestor view of the
responder.

There are function props a view can implement to request the interaction lock:

• View.props.onStartShouldSetResponder: (e) => true - If a touch gesture
begins on this view, should this view become the responder?

• View.props.onMoveShouldSetResponder: (e) => true - If the user moves
their finger over this view during a touch gesture, should this view become
the responder?

Gestures 551

If one of these functions returns true, then the view has requested the interaction
lock. If no other view currently owns the interaction lock, then the requesting view
automatically becomes the responder. If a view does own the interaction lock, then
the owner’s onResponderTerminationRequest function prop will be called – the
owner can decide whether to keep or hand off the interaction lock.

One of the following props will be called for the view requesting the interaction lock:

• View.props.onResponderGrant: (e) => {} - The request for the interaction
lock was granted! The requesting view is now the responder. The view may
want to respond to receiving the interaction lock in some way, e.g. by setting
some state that renders a highlight.

• View.props.onResponderReject: (e) => {} - The request for the interaction
lock was rejected. The view that owned the interaction lock refused to give it
up.

The responder view’s props will be called as the touch gesture continues:

• View.props.onResponderMove: (e) => {} - This is called whenever the user
moves their finger.

• View.props.onResponderRelease: (e) => {} - This is called when the user
lifts their finger.

• View.props.onResponderTerminationRequest: (e) => true - Another view
has requested the interaction lock. Return false to retain the lock, or true to
hand it off.

• View.props.onResponderTerminate: (e) => {} - The interaction lock has been
taken away.

With View.props.onResponderTerminate, this is generally due to returning true

from:

onResponderTerminationRequest,

but there are cases where the operating system will take the interaction lock without
asking (without onResponderTerminationRequest being called first).

For example, onResponderTerminate will be called upon receiving a phone call,

Gestures 552

onResponderTerminationRequestwill not be called, since returning falsewould not
prevent the operating system from taking over control of the screen.

When a touch starts, the onStartShouldSetResponder prop will be called for the
inner-most view containing the touch. If the view returns false (or doesn’t implement
the prop), then the parent’s onStartShouldSetResponder prop will be called. This
process continues up the view hierarchy.

Capture phase

Sometimes a parent view will need to request the interaction lock before any of its
children have a change. In this case, we don’t want the bottom-up calling order of
onStartShouldSetResponder. There are two other props we can use that are called
top-down, i.e. first the parent has a chance to become responder, then the child.

• View.props.onStartShouldSetResponderCapture: (e) => true

• View.props.onMoveShouldSetResponderCapture: (e) => true

These props are analogous to onStartShouldSetResponder and onMoveShouldSetResponder.
These “capture” props are called first starting from the parent, and then down
the view hierarchy. If no view returns true, then onStartShouldSetResponder and
onMoveShouldSetResponder will be called starting from the inner-most view.

The portion of the responder lifecycle where touches are “captured” from top to
bottom is called the capture phase. The portion of the lifecycle where touches are
capture from bottom to top is called the bubble phase.

If you’re coming from web development, you’ll probably be familiar with
these terms – this part of the responder system is modeled after DOM
events!

Diagram

The following diagram illustrates the responder lifecycle for new touches:

Gestures 553

The same flow happens every time a touchmoves, except that onMoveShouldSetResponder
and onMoveShouldSetResponderCapture are called instead of onStartShouldSetResponder

Gestures 554

and onStartShouldSetResponderCapture.

Touch event object

All of the responder function props are called with an event object, often abbreviated
as evt or e, e.g. the argument in onStartShouldSetResponder = (e) => {}. The event
object contains the property nativeEvent which is an object containing:

• locationX - The X position of the touch, relative to the responder view
• locationY - The Y position of the touch, relative to the responder view
• pageX - The X position of the touch, relative to the root view
• pageY - The Y position of the touch, relative to the root view
• timestamp - The time when the touch occurred
• identifier - The id of the touch
• target - The id of the view receiving the touch event
• touches - Array of all current touches on the screen
• changedTouches - Array of all touch events that have changed since the last
event

You may need to access these properties to do touch-related calculations. However,
React Native provides a higher-level convenience wrapper on top of the responder
system that you’ll likely use instead.

PanResponder

The touch event object contains raw values, such as the time and location of touches.
Many interactions, however, will require the distance and velocity of the touches over
time. React Native provides a higher-level API called PanResponder.

The PanResponder intercepts each responder function so that it can maintain a
gestureState object containing the distance, velocity, and a few other computed
properties.We can create a PanResponderwith PanResponder.create(config), where
the config object contains any of the following functions:

• onStartShouldSetPanResponder: (e, gestureState) => {}

Gestures 555

• onStartShouldSetPanResponderCapture: (e, gestureState) => {}

• onMoveShouldSetPanResponder: (e, gestureState) => {}

• onMoveShouldSetPanResponderCapture: (e, gestureState) => {}

• onPanResponderReject: (e, gestureState) => {}

• onPanResponderGrant: (e, gestureState) => {}

• onPanResponderStart: (e, gestureState) => {}

• onPanResponderEnd: (e, gestureState) => {}

• onPanResponderRelease: (e, gestureState) => {}

• onPanResponderMove: (e, gestureState) => {}

• onPanResponderTerminate: (e, gestureState) => {}

• onPanResponderTerminationRequest: (e, gestureState) => {}

• onShouldBlockNativeResponder: (e, gestureState) => {}

Each of these wraps a responder function (with roughly the same name) and then
calls it with the gestureState object in addition to the original event object. For
example, onPanResponderMove wraps onResponderMove.

The only exception is onShouldBlockNativeResponder, which is a totally
different function from the underlying responder functions. This function
is for blocking native components from becoming the responder, and only
works on Android. We won’t be using it.

The gestureState object contains the following properties:

• stateID - The id of the gestureState – persisted as long as there’s at least one
touch on screen

• moveX - The latest screen coordinates of the most recently moved touch
• moveY - The latest screen coordinates of the most recently moved touch
• x0 - The screen coordinates at the time the responder was granted
• y0 - The screen coordinates at the time the responder was granted
• dx - Accumulated distance of the gesture since the touch started
• dy - Accumulated distance of the gesture since the touch started
• vx - Current velocity of the gesture
• vy - Current velocity of the gesture
• numberActiveTouches - Number of touches currently on screen

Now that we’ve covered the fundamentals, let’s put them to use!

Gestures 556

Draggable component

For our puzzle game, we want to build a dragging gesture. In order to do this, we’ll
need to:

• Handle when the user touches a specific puzzle piece component
• Continously monitor the x, y offset as they move their finger
• Record the final x, y offset when they lift their finger

As the user moves their finger, we can monitor the x, y offset to update the puzzle
piece component’s transform. Thus the puzzle piece will follow the user’s finger as it
moves across the screen – this is how we simulate “dragging” in mobile apps. When
the user lifts their finger, we will use the final x, y offset to determine how to update
the puzzle object accordingly.

Creating a PanResponder

Let’s use a PanResponder to make a Draggable component. We’ll use our Draggable
component to handle touches and to monitor the x, y offset of the drag.

We’ll make this component fairly generic, both to better separate the dragging code
from the rendering code, and to make the component easy to reuse. The component’s
sole purpose will be to handle the logic around touch events. It won’t render anything
to the UI itself. The Draggable component will pass a PanResponder and x, y offset
to its children – its children will be responsible for using this information to render
the UI. The Draggable component will expose callback props that notify the parent
as touch events occur. We’ll use these events to update the puzzle object.

Open up components/Draggable.js. The skeleton of the component has already been
written for you. Take a look at the propTypes:

Gestures 557

checkpoints/puzzle-2/components/Draggable.js

static propTypes = {

children: PropTypes.func.isRequired,

onTouchStart: PropTypes.func,

onTouchMove: PropTypes.func,

onTouchEnd: PropTypes.func,

enabled: PropTypes.bool,

};

This component will render arbitrary children by calling the children function
prop. When the user interacts with the component, it will call the onTouchStart,
onTouchMove, and onTouchEnd props at the appropriate times. We’ve also included an
enabled prop to prevent dragging – we’ll use this when the board is mounting and
unmounting so that the user can’t interfere with the animation.

We chose to name our props onTouchStart, onTouchMove, and onTouchEnd

after the touch event names on the web, in order to make our Draggable
component feel more familiar for those with a web background. However,
React Native doesn’t interpret these names in any special way, and we
could’ve named the props anything we wanted.

Using a function for children might look familiar. That’s because we used
this same pattern in the second part of the “Core APIs” chapter!

Let’s begin by writing the constructor. In the constructor, we’ll initialize this.state
to keep track of whether this component is actively being dragged. We’ll also create
a new pan responder with PanResponder.create.

When we write the render method, we’ll pass the value of this.state.dragging

to the Draggable component’s children. This allows them to render differently
depending on whether a drag is occuring or not. In our case, we will use this to
adjust the zIndex of puzzle pieces so that the piece currently being dragged renders
on top of the rest.

Add the following constructor to Draggable.js:

Gestures 558

puzzle/components/Draggable.js

constructor(props) {

super(props);

this.state = {

dragging: false,

};

this.panResponder = PanResponder.create({

onStartShouldSetPanResponder: this

.handleStartShouldSetPanResponder,

onPanResponderGrant: this.handlePanResponderGrant,

onPanResponderMove: this.handlePanResponderMove,

onPanResponderRelease: this.handlePanResponderEnd,

onPanResponderTerminate: this.handlePanResponderEnd,

});

}

We’ll implement each of the pan responder functions as instance properties of our
component.

PanResponder functions

Let’s start by implementing this.handleStartShouldSetPanResponder, which we
assigned to onStartShouldSetPanResponder when creating our pan responder. We
want this component to become the responder when the enabled prop is true. Add
the following function to the Draggable component:

Gestures 559

puzzle/components/Draggable.js

handleStartShouldSetPanResponder = () => {

const { enabled } = this.props;

return enabled;

};

Next, we’ll handle when this component becomes the responder in

handlePanResponderGrant.

When this component becomes the responder, we want to set state.dragging to
true.

Add handlePanResponderGrant now:

puzzle/components/Draggable.js

handlePanResponderGrant = () => {

const { onTouchStart } = this.props;

this.setState({ dragging: true });

onTouchStart();

};

We’ll pass a the onTouchStart() prop later to allow the parent to animate the scale
of the puzzle piece when a drag begins.

Any time the user moves their finger, we’ll call the onTouchMove prop with the
offset from the initial touch position. This lets us animate the transform of the
puzzle piece as it’s dragged from within Board. Let’s do this by adding the following
handlePanResponderMove:

Gestures 560

puzzle/components/Draggable.js

handlePanResponderMove = (e, gestureState) => {

const { onTouchMove } = this.props;

// Keep track of how far we've moved in total (dx and dy)

const offset = {

top: gestureState.dy,

left: gestureState.dx,

};

onTouchMove(offset);

};

Lastly, when the user lifts their finger, or if the operating system cancels the gesture
(e.g. a phone call comes in), we want to reset our state and call onTouchMove and
onTouchEndwith the final touch position.We can handle both onPanResponderRelease
and onPanResponderTerminate in the sameway. Add the following handlePanResponderEnd:

puzzle/components/Draggable.js

handlePanResponderEnd = (e, gestureState) => {

const { onTouchMove, onTouchEnd } = this.props;

const offset = {

top: gestureState.dy,

left: gestureState.dx,

};

this.setState({

dragging: false,

});

onTouchMove(offset);

onTouchEnd(offset);

};

Gestures 561

If the user receives a phone call, the drag gesture will end as if the user had
lifted their finger. This is acceptable for our game, but in some scenarios it
may be desirable to handle the onPanResponderTerminate case differently
from an intentional touch event.

Rendering draggable pieces

When we render the Draggable component, we’ll call the children prop func-
tion. We’ll pass this function the dragging and offset values from state so
that we can update the positions of the children as we render. We’ll also pass
this.panResponder.panHandlers – these are the responder functions wrapped by
the pan handler to include gestureState.

Add the following render method:

puzzle/components/Draggable.js

render() {

const { children } = this.props;

const { dragging } = this.state;

// Update children with the state of the drag

return children({

handlers: this.panResponder.panHandlers,

dragging,

});

}

Save Draggable.js. Now open Board.js again so we can render the Draggable

component from our renderSquare method.

There are three changes we’ll be making to renderSquare:

• We’ll return a Draggable component. We’ll move what we’re currently ren-
dering into the children function prop of Draggable. The children function
is passed handlers, dragging, and offset from the Draggable component,

Gestures 562

and should return the children component to render. For the other props of
Draggable, we need to set the enabled prop to true once the board’s pieces
have transitioned in – so we’ll check if the board is in the DidTransitionIn

state. We’ll also set onTouchStart, onTouchMove, and onTouchEnd props, which
we’ll write shortly.

• We’ll update itemStyle to use the draggable argument of the children func-
tion. When draggable is true, we want to set the zIndex of the piece to 1.
This will ensure the piece renders above the adjacent pieces when its being
dragged (we’ll increase its scale during the drag, so it will overlap the edges of
the adjacent pieces).

• We’ll update the Animated.View by spreading the handlers argument of the
children function into the Animated.View props. This is how we apply the
PanResponder to a view.

Let’s makes these updates to renderSquare now:

puzzle/components/Board.js

const itemSize = calculateItemSize(size);

return (

<Draggable

key={square}

enabled={transitionState === State.DidTransitionIn}

onTouchStart={() => this.handleTouchStart(square)}

onTouchMove={offset =>

this.handleTouchMove(square, index, offset)

}

onTouchEnd={offset =>

this.handleTouchEnd(square, index, offset)

}

>

{({ handlers, dragging }) => {

const itemStyle = {

position: 'absolute',

width: itemSize,

height: itemSize,

Gestures 563

overflow: 'hidden',

transform: [

{ translateX: this.animatedValues[square].left },

{ translateY: this.animatedValues[square].top },

{ scale: this.animatedValues[square].scale },

],

zIndex: dragging ? 1 : 0,

};

const imageStyle = {

position: 'absolute',

width: itemSize * size + (itemMargin * size - 1),

height: itemSize * size + (itemMargin * size - 1),

transform: [

{

translateX:

-Math.floor(square % size) *

(itemSize + itemMargin),

},

{

translateY:

-Math.floor(square / size) *

(itemSize + itemMargin),

},

],

};

return (

<Animated.View {...handlers} style={itemStyle}>

<Image style={imageStyle} source={image} />

</Animated.View>

);

}}

</Draggable>

);

};

Gestures 564

The above code snippet is pretty long, but we only actually made a few changes.
One of the most important lines is the one where we spread the handlers into the
Animated.View:

puzzle/components/Board.js

<Animated.View {...handlers} style={itemStyle}>

Without this, our Draggable component won’t respond to touches!

For each of the Draggable props onTouchStart, onTouchMove, and onTouchEnd, we’ll
call the Board methods handleTouchStart, handleTouchMove, and handleTouchEnd,
respectively. These handler methods don’t exist yet, so let’s write them now.

Handling touch events

When a touch begins on a piece, we want to scale the piece so that it gives the illusion
of lifting it. We can do that by animating this.animatedValues[square].scale.
We’ll use the Animated.spring function to scale the piece to 1.1 times its original
size. Add the following handleTouchStart method to the Board component:

puzzle/components/Board.js

handleTouchStart(square) {

Animated.spring(this.animatedValues[square].scale, {

toValue: 1.1,

friction: 20,

tension: 200,

useNativeDriver: true,

}).start();

}

As always, we have to call start() after setting up the animation.

Gestures 565

Every time a touch moves, we want to update this.animatedValues[square].left
and this.animatedValues[square].top for the piece. We’ll need to restrict the
piece’s movement according to which square is currently empty. We can determine
this by calling the availableMove utility function. This function returns a string,
'up', 'down', 'left','right', or 'none', depending on the state of the game board.
Based on this, we can restrict the values of top and left to only allow the valid
moves according to our game’s rules. The exact math we use is specific to this game,
so it’s not important to follow it completely.

Add the following handleTouchMove to Board:

puzzle/components/Board.js

handleTouchMove(square, index, { top, left }) {

const { puzzle, puzzle: { size } } = this.props;

const itemSize = calculateItemSize(size);

const move = availableMove(puzzle, square);

const {

top: initialTop,

left: initialLeft,

} = calculateItemPosition(size, index);

const distance = itemSize + itemMargin;

const clampedTop = clamp(

top,

move === 'up' ? -distance : 0,

move === 'down' ? distance : 0,

);

const clampedLeft = clamp(

left,

move === 'left' ? -distance : 0,

move === 'right' ? distance : 0,

);

Gestures 566

this.animatedValues[square].left.setValue(

initialLeft + clampedLeft,

);

this.animatedValues[square].top.setValue(initialTop + clampedTop);

}

We have two options for updating the top and left Animated.Value.
We could either animate them (e.g. using Animated.spring), or update
them immediately with setValue. After testing both ways, we found using
setValue provides a slightly better experience on slower devices in this
specific case.

Beforewe handlewhen touches end, let’s first write a utilitymethod, updateSquarePosition,
that animates a piece’s position. When updating a piece’s position, we’ll update both
the top and left values at the same time for simplicity (even though a piece can only
be moved along one axis at a time).

Begin the updateSquarePosition method with the following:

puzzle/components/Board.js

updateSquarePosition(puzzle, square, index) {

const { size } = puzzle;

const { top, left } = calculateItemPosition(size, index);

const animations = [

Animated.spring(this.animatedValues[square].top, {

toValue: top,

friction: 20,

tension: 200,

useNativeDriver: true,

}),

Animated.spring(this.animatedValues[square].left, {

toValue: left,

friction: 20,

Gestures 567

tension: 200,

useNativeDriver: true,

}),

];

Since we’re going to animate multiple values at once, we’ve created an animations

array containing all of our animation objects. Notice that we didn’t call start() on
these animations. We need to know when both animations have completed, which
is hard to determine if we start them independently. Fortunately, the React Native
provides the Animated.parallel for this case.

Animated.parallel takes an array of animations, and returns an object with a
start(callback) method, just like with other animations. The callback is called
when every animation in the array is completed. Tomake our updateSquarePosition
slightly more convenient to use (with async/await syntax), we’ll return a Promise

that resolves when the callback is called.

Update the updateSquarePosition method to call Animated.parallel and return a
Promise now:

puzzle/components/Board.js

updateSquarePosition(puzzle, square, index) {

const { size } = puzzle;

const { top, left } = calculateItemPosition(size, index);

const animations = [

Animated.spring(this.animatedValues[square].top, {

toValue: top,

friction: 20,

tension: 200,

useNativeDriver: true,

}),

Animated.spring(this.animatedValues[square].left, {

toValue: left,

friction: 20,

tension: 200,

Gestures 568

useNativeDriver: true,

}),

];

return new Promise(resolve =>

Animated.parallel(animations).start(resolve),

);

}

Now that we’ve finished updateSquarePosition, we can write the handleTouchEnd

method to finish handling touch events.

When a touch ends, we need to do a few things:

• We need to scale the piece back to its original size (a scale value of 1) using
Animated.spring.

• We need to detect whether the user dragged the piece far enough to move it
or not. If the piece was moved more than halfway into the empty square, then
we’ll consider this a move, and we’ll inform the Game of the move by calling the
onMoveSquare prop. If the piece was moved less than halfway into the empty
square, then we won’t consider this a move, and we’ll instead animate the piece
back to its original position.

Begin the handleTouchEnd with the following to reset the piece’s scale:

puzzle/components/Board.js

handleTouchEnd(square, index, { top, left }) {

const { puzzle, puzzle: { size }, onMoveSquare } = this.props;

const itemSize = calculateItemSize(size);

const move = availableMove(puzzle, square);

Animated.spring(this.animatedValues[square].scale, {

toValue: 1,

friction: 20,

tension: 200,

Gestures 569

useNativeDriver: true,

}).start();

Based on the direction the piece was moved, we can determine if it was moved
more than halfway to its destination. We’ll finish the handleTouchEnd method by
either calling onMoveSquare to inform the Game of a successful move, or by calling
updateSquarePosition to reset the piece’s position:

puzzle/components/Board.js

handleTouchEnd(square, index, { top, left }) {

const { puzzle, puzzle: { size }, onMoveSquare } = this.props;

const itemSize = calculateItemSize(size);

const move = availableMove(puzzle, square);

Animated.spring(this.animatedValues[square].scale, {

toValue: 1,

friction: 20,

tension: 200,

useNativeDriver: true,

}).start();

if (

(move === 'up' && top < -itemSize / 2) ||

(move === 'down' && top > itemSize / 2) ||

(move === 'left' && left < -itemSize / 2) ||

(move === 'right' && left > itemSize / 2)

) {

onMoveSquare(square);

} else {

this.updateSquarePosition(puzzle, square, index);

}

}

After a successful move, the Game will update the puzzle object and pass it back into

Gestures 570

the Board as a prop, along with the previousMove prop. We need to handle updates
to these props in componentDidUpdate.

Whenever the puzzle object updates, we’ll call updateSquarePosition to animate
the piece that was last moved into its new position. To do this, add the following
componentDidUpdate to Board:

checkpoints/puzzle-2/2/components/Board.js

async componentDidUpdate(prevProps) {

const {

previousMove,

onTransitionOut,

puzzle,

teardown,

} = this.props;

const didMovePiece =

puzzle !== prevProps.puzzle && previousMove !== null;

if (didMovePiece) {

await this.updateSquarePosition(

puzzle,

previousMove,

getIndex(puzzle, previousMove),

);

}

}

Great! We’ve finished the touch event handling.

Try it out!

Save Board.js. After the app reloads, press the start button to begin the game and
try dragging pieces around.

Gestures 571

You should see the pieces smoothly scale up and down as you touch and release
them. You should only be able to drag pieces into the adjacent empty square on the
board. The pieces should snap either to their new positions or back to their original
positions, but should never get stuck in-between.

Wrapping up gesture handling

We just built a drag-and-drop gesture from scratch! Let’s review what we did:

• We used a PanResponder to interact with the gesture responder system. We im-
plemented the onStartShouldSetPanResponder handler to request the global in-
teraction lock, and thenwe implemented onPanResponderGrant, onPanResponderMove,
onPanResponderRelease, and onPanResponderTerminate to keep track of the
state of the gesture.

• We created a generic Draggable component that provides us with a simpler
interface for handling the gesture data we care about when building drag-and-
drop interactions: onTouchStart, onTouchMove, and onTouchEnd.

Gestures 572

• We handled touches by looking at the offset from the first touch event to the
current one, and decidingwhether or not tomove the puzzle piece.We animated
the scale of the puzzle piece so that it feels like we’re lifting the piece off of the
board.We animated the position of the puzzle piece using Animated.spring and
Animated.parallel to snap it to a valid position on the board.

• If a new game state was passed in as a prop, we animated the pieces to reflect
the latest state of the game board.

Putting it all together, we were able to achieve an intuitive-feeling, cross-platform
drag-and-drop gesture that performs smoothly even on lower-end devices.

Here are a few recommendations for building gestures:

1. Most gestures should use the PanResponder like we did in this example rather
than using the underlying View responder props directly.

(e.g. onStartShouldSetPanResponder instead of onStartShouldSetResponder)

This is because most gestures will need to use the values in the gestureState

provided by the PanResponder, which are tricky to calculate on your own.

2. It’s often helpful to separate gesture-related code into a separate component
like we did with our Dragging component.

This ensures we keep the state of the gestures (e.g. offset) separate from the state
of the board. It can also help with performance: the Draggable component will re-
render each time its state updates, but this is significantly less costly than if we had
to re-render a more complex component like the Board.

3. If possible, test your gestures on different devices as you build them.

You may find that your intuition about what should perform better isn’t actually
the case, and it’s much easier to work through performance issues one-at-a-time in
isolation, rather than all at once when the gesture is finished. Furthermore, if you
run into a React Native bug or inconsistency across platforms (there are several of
these), it’s better to know sooner than later.

Speaking of performance, there’s one more performance improvement we made
which we haven’t covered yet.

Gestures 573

Using PureComponent

You may have noticed that our Board component extends React.PureComponent

rather than React.Component. Components that extend React.Component will re-
render any time their parent re-renders or any time setState is called internally,
even if the value of state or props is the same. By contrast, components that extend
React.PureComponent will only re-render when state or props actually change.
React checks for changes using a “shallow” equality test (testing the top-level keys
and values within the state and props objects using ===). If state and props are
unchanged, then the component does not re-render.

Preventing re-rendering with PureComponent is especially important for our Board
component. Each time the Game increments the elapsed time counter in the top right,
it will re-render all of its children, including Board. If the Board re-renders every
second, this means it will likely re-render during a drag gesture. Re-rendering results
in a noticeable stutter during the gesture. In other words, we use PureComponent to
achieve a smooth drag gesture even as other parts of the UI update.

If you want to see this for yourself, find this line at the top of Board.js:

export default class Board extends React.PureComponent {

Change it to:

export default class Board extends React.Component {

Then save Board.js. You’ll notice the stutter as you drag pieces around, especially
on slower devices. Make sure to change this back when you’re done!

If we had to re-render the Board during drag gestures for some reason, we might
instead consider breaking the component into smaller components, some of which
can re-render more quickly or can extend PureComponent.

Gestures 574

Finishing the game

We’ve nearly finished building the puzzle game now. The next part we’ll write is the
animation where the pieces fly onto and off of the board as it mounts and unmounts:

Animating all pieces

Let’s start by updating the constructor of the board. Open Board.js if you don’t
already have it open.

We want the puzzle pieces to render off-screen to begin with. This will let us animate
them into view. We can use the Dimensions API we learned about in the chapter
“Core APIs, Part 1” to get the height of the screen, and we can use this when setting
the initial Animated.Value for the piece’s top.

Update the constructor to:

Gestures 575

puzzle/components/Board.js

constructor(props) {

super(props);

const { puzzle: { size, board } } = props;

this.state = { transitionState: State.WillTransitionIn };

this.animatedValues = [];

const height = Dimensions.get('window').height;

board.forEach((square, index) => {

const { top, left } = calculateItemPosition(size, index);

this.animatedValues[square] = {

scale: new Animated.Value(1),

top: new Animated.Value(top + height),

left: new Animated.Value(left),

};

});

}

With this, pieces will initially render exactly one screen-height below where we’ll
move them.

Next, we need to animate every piece onto the board. We’ll write a helper method
animateAllSquares(visible) that does this for us. This method will animate pieces
onto the board when we call it with visible set to true, and it will animate pieces
off of the board when we call it with visible set to false.

To perform the animation, we’ll animate the top of each piece by mapping the
puzzle.board to an array of Animated.timing animations (although remember that
we’re eventually rendering translateY instead of top, for performance). Just like
with our updateSquarePositionmethod, we’ll use Animated.parallel to run all the
animations at once and let us easily await their completion. We can create a playful
staggered animation by setting the delay option of the animation.

Gestures 576

Add the following animateAllSquares method:

puzzle/components/Board.js

animateAllSquares(visible) {

const { puzzle: { board, size } } = this.props;

const height = Dimensions.get('window').height;

const animations = board.map((square, index) => {

const { top } = calculateItemPosition(size, index);

return Animated.timing(this.animatedValues[square].top, {

toValue: visible ? top : top + height,

delay: 800 * (index / board.length),

duration: 400,

easing: visible

? Easing.out(Easing.ease)

: Easing.in(Easing.ease),

useNativeDriver: true,

});

});

return new Promise(resolve =>

Animated.parallel(animations).start(resolve),

);

}

Notice that depending on the visible argument, we either animate the piece to its
position on the board, top, or off the board, top + height.

Let’s now update our componentDidMount to call animateAllSquares:

Gestures 577

puzzle/components/Board.js

async componentDidMount() {

await this.animateAllSquares(true);

const { onTransitionIn } = this.props;

this.setState({ transitionState: State.DidTransitionIn });

onTransitionIn();

}

With that, we’ve completed the animation where the pieces fly onto the board! The
last thing we need to hook up is the animation where the pieces fly off the board
when the game finishes.

We can do this by updating our componentDidUpdate to watch for when the
teardown prop is set to true by the Game. When the teardown prop first becomes
true, we’ll call this.animateAllSquares(false). Once this completes, we’ll set the
transitionState to DidTransitionOut, and we’ll call the onTransitionOut prop
to inform that Game that the Board animations are finished and it’s ready to be
unmounted.

Update componentDidUpdate to:

puzzle/components/Board.js

async componentDidUpdate(prevProps) {

const {

previousMove,

onTransitionOut,

puzzle,

teardown,

} = this.props;

const didMovePiece =

puzzle !== prevProps.puzzle && previousMove !== null;

const shouldTeardown = teardown && !prevProps.teardown;

Gestures 578

if (didMovePiece) {

await this.updateSquarePosition(

puzzle,

previousMove,

getIndex(puzzle, previousMove),

);

}

if (shouldTeardown) {

await this.animateAllSquares(false);

this.setState({ transitionState: State.DidTransitionOut });

onTransitionOut();

}

}

Try it out!

Save Board.js. After the app reloads, press the start button to begin the game. To
test the animation we just added, you can either complete the puzzle… or you can
press quit. The pieces should fly offscreen, then the screen should transition out, and
finally you’ll be taken back to the start screen.

Gestures 579

From the start screen, you can begin another game. The state of the game completely
resets after each game.

We’re Done!

We’ve built a complete puzzle game with animations and drag-and-drop gestures.
Our app performs smoothly and our animations look great on both iOS and Android.

In this chapter, we learned how to use the PanResponder in conjunction with the
Animated API. Using these together, we can build nearly any common gesture you
can find in a mobile app.

We covered several ways of ensuring good animation and gesture performance:

• Using transform instead of top and left to avoid costly layout calculations
• Using useNativeDriver to reduce the number of messages that must be passed
between the native and JavaScript threads

Gestures 580

• Using PureComponent to prevent unnecessary component re-rendering

In the next chapter, we’ll cover how to publish your app on the App Store and Play
Store.

Native Modules
What are native modules?

So far in this book we’ve written all of our apps purely in JavaScript. We’ve used the
built-in React Native components and APIs to interact with the underlying native
iOS and Android platforms.

However, sometimes we want to use native functionality that isn’t provided out-of-
the-box by React Native. In these cases, we can write native components and APIs
ourselves, and expose bindings to use them from JavaScript. In React Native, these
bindings are called a “bridge.”

Common use cases

Native modules are most commonly used for bridging existing native functionality
into JavaScript. Native modules are also occasionally used for performance.

Here are a few of the most common cases:

• Accessing native platform features that React Native doesn’t support out-of-
the-box, e.g. payments APIs

• Exposing components and functionality when adding React Native to an
existing native app

• Using existing iOS and Android libraries, e.g. authentication libraries for a 3rd
party service

• High-performance algorithms like image processing that are usually low-level
and multithreaded

• Extremely high-performance viewswhen running into performance issues with
React Native views (this is rare)

Native Modules 582

When to use native modules

Using native modules should be the exception, rather than the norm. It’s generally
best to write views, algorithms, and business logic in JavaScript when possible.
The JavaScript we write is almost completely cross-platform, and updating to new
versions of React Native is usually low effort. Native modules, on the other hand,
must be written per platform, and can be time-consuming to update since they
depend on both the native platform APIs and React Native’s APIs. Additionally, we
can’t use the convenient Expo preview app once we start working with native code –
we have to either initialize a new project with npx react-native init (covered later
in this chapter), or we have to eject our existing app using expo eject. For either of
these approaches we’ll then need to build the app using Xcode and Android Studio
before we can see it on our phones.

If we’re integrating React Native into an existing app (this is known as a “hybrid”
app), it’s likely we’ll use native modules more frequently, since we’ll want to expose
the existing components and functionality of our app to React Native. In the short
term, it’s often faster to bridge existing components than to re-write them in React
Native. However, in the long term, it can be better to re-write them – by migrating
components to React Native, we’ll only need to maintain a single implementation,
and our team will only need knowledge of a single language/platform.

Native modules on npm

When we decide we need a native module, we should first check if there’s an existing
open source implementation. We’ll likely find an npm package for common use cases
such as taking photos, playing videos, and displaying maps.

The GitHub organization react-native-community⁸³ maintains many of the
most popular native modules. These modules are very high quality and
maintained by React Native core contributors.

It’s very important to read the installation instructions, as setup for native modules
can vary. Most native modules on npm come with two sets of instructions, one for
automatic setup using react-native link, and one for manual setup.

⁸³https://github.com/react-native-community

https://github.com/react-native-community
https://github.com/react-native-community

Native Modules 583

react-native-link

Most of the time, installing a native module consists of 2 steps:

1. Install the npm package with: yarn add foo

2. Integrate the native code into your app by running react-native link

Remember, yarn and npm work interchangeably, but you should always
stick to one or the other. Because we’re using yarn in this book, if you see
npm install foo in a package’s installation instructions, make sure to run
yarn add foo instead!

The command react-native link can often integrate native modules automatically.
Library authors can configure the various paths and settings used by this command
to integrate their native code.

However, react-native link only handles the most common cases, so many native
modules comewith custom setup instructions beyond this. Custom setup instructions
usually involve manually modifying iOS and Android native code.

Manual setup

If you’re building a hybrid app, it’s likely your directory structure and code will
differ somewhat from the structure expected by react-native link. For this reason,
native modules usually include a set of instructions for manually integrating the
native code into your app. This generally involves modifying the Xcode and gradle
build configurations to compile native libraries that were downloaded by yarn into
the node_modules directory.

Building a native module

In this chapter, we’ll build an app that displays a native pie chart:

Native Modules 584

There are a variety of graphing libraries available for React Native already, some of
which are written in JavaScript and some of which are native modules. In order to
explore how native modules work, however, we’ll write a native pie chart module
from scratch.

The semantics of native iOS and Android code are outside the scope of this book,
so we will primarily copy and paste the native code we need. People without any
experience writing native code are often able to bridge simple native modules, so we
recommend you attempt to follow along even if you don’t have any experience with
these platforms.

Building this app will consist of the following steps:

1. Create a new app using npx react-native init

2. Write the pie chart component for both iOS and Android
3. Create a single PieChart.js that renders the native pie chart component from

JavaScript

Native Modules 585

If you’re primarily testing on Android, feel free to skip the Xcode/iOS
sections, or vice versa. The project will work correctly on one platform
regardless of any native code or development tools for the other platform.

Native development is challenging!

There are a lot of things that can go wrong when developing a native app. Although
the code we’ll write in this chapter is relatively simple (as native apps go), it’s likely
you’ll run into several challenges along the way, especially if you’ve never done
native development before.

The most challenging issues tend to be related to your development environment
or build tools. These can be tricky to debug, since they may be somewhat unique
to the setup on your computer. When you encounter an error with a development
tool or building the app, the best place to start is with a Google search. This will
often reveal a Stack Overflow question or GitHub issue where somebody else in
the community had the exact same problem. If you don’t find anything useful, we
recommend opening a GitHub issue on the React Native github repo⁸⁴. This is the
most likely way to have your issue resolved in a timely manner. If that still doesn’t
work, you’re welcome to ask us (the authors) for help (instructions on how to do
so are in the introduction chapter), but be aware that it’s unlikely we will be able to
solve problems related to native app development.

It’s not all bad news though! The React Native community is extremely active,
and new native modules are added to npm frequently – writing custom native
modules will become less and less common as the ecosystem evolves. These complex
challenges with native development are a big reason for React Native’s success after
all!

Development environment

Before we can get started building the pie chart app, you’ll need to set up your
development environment. If you haven’t done native app development before, it’s

⁸⁴https://github.com/facebook/react-native

https://github.com/facebook/react-native
https://github.com/facebook/react-native

Native Modules 586

likely you’ll need to download some new software. Building for iOS will require a
computer running macOS with Xcode installed. Building for Android can be done
on any computer with Android Studio installed. We recommend you set up at least
one of these tools before continuing with this chapter.

To set up your development environment, follow the instructions on the “Getting
Started”⁸⁵ page of the React Native docs site. At the top left of the header of this page,
you should see a version number – if this is greater than 0.61, switch to 0.61 now by
clicking on the version number and selecting the documentation for 0.61 (since that’s
the version we use in this chapter). After confirming the version, click the “React
Native CLI Quickstart” tab at the top of the page, then select the “Development OS”
and “Target OS” you plan to test with.

Follow the instructions for the “Development OS” and “Target OS” of your choice,
up until the section “Creating a new application.” We’ll create a new application in a
slightly different way than these docs demonstrate (although both will give the same
result).

If you’ve previously followed these instructions and installed dependencies
for a version of React Native that’s earlier than 0.61, you may need to go
through the setup again. A few aspects of the setup process changed with
0.61.

Initializing the project

We’re going to create a new project using npx react-native init. The npx command
is node’s built-in script runner, that can automatically download and run a CLI
command packaged in a node_module (in this case, react-native) – if you already
have node instead, then you have npx installed too.

$ npx react-native init PieChart --version react-native@0.61.4

Once this finishes, navigate into the PieChart directory.

⁸⁵https://facebook.github.io/react-native/docs/getting-started.html

https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html

Native Modules 587

Project structure

Let’s take a look at the files in our project directory now:

1 ├── .buckconfig

2 ├── .eslintrc.js

3 ├── .flowconfig

4 ├── .gitattributes

5 ├── .gitignore

6 ├── .prettierrc.js

7 ├── .watchmanconfig

8 ├── App.js

9 ├── __tests__

10 ├── android

11 ├── app.json

12 ├── babel.config.js

13 ├── index.js

14 ├── ios

15 ├── metro.config.js

16 ├── node_modules

17 ├── package.json

18 └── yarn.lock

Most of the files should look familiar. There are a few new configuration files, but
we’ll focus mainly on the new ios and android directories and the index.js file.

The ios directory contains an Xcode project and the android directory contains an
Android Studio project. From this point on, we’ll need to build the project in either
Xcode or Android Studio before we’re able to preview it in a simulator or on a device.

You may also build using npx react-native run-ios and npx

react-native run-android, which call into the native platform’s build
tools from the command line. However, if you run into any errors, they’ll
be easier to diagnose within Xcode or Android Studio.

The index.js file is the “entry point” of our app now – in other words, it’s the first

Native Modules 588

JavaScript file in our app that gets executed when our app launches. Let’s look at this
file now.

Here’s what index.js contains:

PieChart/index.js

1 /**

2 * @format

3 */

4

5 import {AppRegistry} from 'react-native';

6 import App from './App';

7 import {name as appName} from './app.json';

8

9 AppRegistry.registerComponent(appName, () => App);

The call to AppRegistry.registerComponent registers a “root component” of our app
that will be instantiated by native code. Apps can have multiple root components,
each with a unique name, which can be instantiated within native code.

The @format annotation at the top of files created by npx react-native init tell
code formatters, like prettier⁸⁶, that the file should be formatted.

For apps created with expo init, the App.js file is normally the entry point
and the App component is registered automatically so long as it has export
default in front of it.

How native modules work

There are 2 kinds of native modules:

• API modules
• UI component modules

⁸⁶https://prettier.io/

https://prettier.io/
https://prettier.io/

Native Modules 589

API modules expose bindings for native methods to be called from JavaScript. When
calling a native method from JavaScript, any values passed are marshalled⁸⁷ on the
JavaScript side and unmarshalled on the native side. All APIs called from JavaScript
are asynchronous, so we will need to use promises, callbacks, or events if we want
to handle a response from the native side.

UI component modules expose a new React component that we can render from our
JavaScript code. When we render this component in our JavaScript, the native thread
will use a “View Manager” to create a new native view. The View Manager handles
the lifecycle of the native view, including: instantiating the view, marshalling and
unmarshalling the component’s props, updating the view with its props, and reusing
native views where possible (for performance).

Prop types

On both platforms, we’ll want our view to consume the same props. This will allow
us to create a single React component that works for both iOS and Android. Our pie
chart component will use the following props:

PieChart/PieChart.js

12 static propTypes = {

13 data: PropTypes.arrayOf(

14 PropTypes.shape({

15 value: PropTypes.number,

16 color: ColorPropType,

17 }),

18).isRequired,

19 strokeWidth: PropTypes.number,

20 strokeColor: ColorPropType,

21 ...ViewPropTypes,

22 };

The different segments of the pie chart, the data prop, are passed as an array of
objects containing a numeric value and a color string. The segments of the pie

⁸⁷https://en.wikipedia.org/wiki/Marshalling_(computer_science)

https://en.wikipedia.org/wiki/Marshalling_(computer_science)
https://en.wikipedia.org/wiki/Marshalling_(computer_science)

Native Modules 590

chart may optionally be rendered with a colored stroke, configurable with a numeric
strokeWidth and strokeColor string. We’ll also allow a style prop, just like other
built-in React Native components.

We’ll now build a UI component native module for each platform. As we build the
module, we’ll make sure it supports the data, strokeWidth, and strokeColor props.
The style prop will be handled automatically for us.

Feel free to follow the instructions for just iOS or just Android, and come
back to the other platform another time.

iOS

The structure of the ios directory looks like this:

ios

├── PieChart

├── PieChart-tvOS

├── PieChart-tvOSTests

├── PieChart.xcodeproj

├── PieChart.xcworkspace

├── PieChartTests

├── Podfile

├── Podfile.lock

└── Pods

We’ll be opening PieChart.xcworkspace in Xcode, and then adding a few new
files to the PieChart directory from within Xcode. We won’t be adding native
tests or configuring our app for Apple TV, so we can ignore the PieChart-tvOS,
PieChart-tvOSTests, and PieChartTests directories. The files Podfile, Podfile.lock,
and Pods and contain React Native’s iOS dependencies, and we won’t be modifying
these.

Native Modules 591

Swift or Objective-C?

When working with iOS, we have two choices for which language we want to use:
Swift or Objective-C (abbreviated Obj-C). The React Native framework for iOS is
written in Obj-C, so the built-in native modules and most of the documentation uses
Obj-C. However, Swift is significantly easier to learn and use, so we’ll be using Swift.
In general we recommend using Swift for new native modules, unless you know that
you need Obj-C for some reason. Regardless of which we choose, we’ll still need to
use Obj-C for one part of the process.

Exporting the native view

There are 4 things we need to do in native code to create a new UI component native
module:

1. Define the view that we want to instantiate from JavaScript. This will be a
subclass of UIView. In our case, we’ll call this class PieChartView.

2. Create a bridging header to expose our Swift code to React Native (this is only
necessary if we’re using Swift). Xcode will help us create this automatically
when we create our first Swift file.

3. Define the View Manager that will handle the lifecycle of our component. This
will be a subclass of RTCViewManager. We’ll call our subclass PieChartManager.

4. Export our custom View Manager and our component’s props to JavaScript
using macros. This is done in Obj-C, regardless of whether we’re using Swift
for our component or not.

Creating files

Let’s begin by creating all the Swift and Obj-C files we’ll need within Xcode. Open
PieChart.xcworkspace in Xcode now. You can do this by launching Xcode and then
choosing File > Open... from the menubar.

This project was written using Xcode 11.3. The project may fail to build in older
versions of Xcode!

Native Modules 592

First we’ll create our native view class, PieChartView.swift. In the project navigator
on the left, right click the “PieChart” group (the one with the yellow folder icon) and
choose “New File…”.

Select the “Swift File” option.

Native Modules 593

Click “Next” and then save the file as PieChartView (the file extension is added
automatically) in the ios/PieChart directory:

Native Modules 594

Click “Create.” Upon creating this file, Xcode will prompt us to create a “bridging
header” – this is necessary to expose our Swift code to React Native, as React Native
is written in Obj-C. Click “Create Bridging Header”:

Native Modules 595

Next, right click the “PieChart” group in the project navigator again and create the
file PieChartManager.swift following the same process. Xcode won’t prompt you to
create a bridging header this time, since we already have one.

Last, we’ll create an Obj-C file to expose our view to JavaScript. Once again, right
click the “PieChart” group and choose “New File…”. This time, select “Objective-C
File”:

Native Modules 596

Save this file as PieChart in the ios/PieChart directory.

At this point, the file navigator should show these files:

Now that we’ve created the files we need, let’s fill them out one by one.

Native Modules 597

Note that despite how the Xcode file navigator looks,
PieChart-Bridging-Header.h is actually in the ios directory, not
the ios/PieChart directory. The Xcode file navigator doesn’t map directly
to the file system. There’s no need to move this file though – it will work
correctly regardless of where it exists on the file system. In fact, moving
files managed by Xcode can be fairly tricky, so for our PieChart app, we
recommend against moving any files if possible.

You may notice that new files created in Xcode include a copyright header
automatically. The copyright header for projects created with the Expo CLI is set
to “Facebook” by default, e.g:

// Copyright © 2018 Facebook. All rights reserved.

If you’re working on a real project, you’ll likely want to change the default value
to your name or your organization’s name, rather than “Facebook”.

The following image demonstrates how to change the organization name used for
the copyright header:

Native Modules 598

Bridging header

We’ll be copying code from the sample code directory, PieChart/ios, into the files
we just created.

Copy the contents of PieChart-Bridging-Header.h from the sample code directory
into your own PieChart-Bridging-Header.h:

PieChart/ios/PieChart-Bridging-Header.h

1 //

2 // Use this file to import your target's public headers that you would\

3 like to expose to Swift.

4 //

5

6 #import "React/RCTViewManager.h"

This exposes the RCTViewManager.h headers to our Swift code so that we can write a
native view in Swift.

PieChartView

We’ll be using a subclass of UIView that draws a pie chart based on the data,
strokeWidth, and strokeColor props.

Copy the contents of ios/PieChart/PieChartView.swift from the sample directory
into your own PieChartView.swift file. We’ll look at two important details of this
code.

If you don’t fully understand the explanations of the native code, that’s
fine! This is mainly included for people who do have a little native iOS
development experience.

Props must be member variables of the class, exposed to Obj-C using the @objc

annotation, for example:

Native Modules 599

@objc var strokeWidth: CGFloat = 0.0

When a prop updates, we need to re-draw the pie chart. We can do this by overriding
the didSetProps method of our view:

override func didSetProps(_ changedProps: [String]!) {

setNeedsDisplay()

}

PieChartManager

Now that we have our view class, we need to create a manager class to instantiate it.
Copy the contents of PieChartManager.swift from the sample directory into your
own PieChartManager.swift file.

This class allows React Native to instantiate our PieChartView class as needed when
we render it from JavaScript.

Export macros

Last, copy the contents of PieChart.m from the sample directory into your own
PieChart.m file.

PieChart/ios/PieChart/PieChart.m

1 //

2 // PieChart.m

3 // PieChart

4 //

5 // Created by Devin Abbott on 6/3/18.

6 // Copyright © 2018 Fullstack. All rights reserved.

7 //

8

9 #import "React/RCTViewManager.h"

10

11 @interface RCT_EXTERN_MODULE(PieChartManager, RCTViewManager)

Native Modules 600

12

13 RCT_EXPORT_VIEW_PROPERTY(data, NSArray)

14 RCT_EXPORT_VIEW_PROPERTY(strokeColor, UIColor)

15 RCT_EXPORT_VIEW_PROPERTY(strokeWidth, CGFloat)

16

17 @end

This file uses macros to expose the view manager class and the view’s props to React
Native.

The RCT_EXTERN_MODULE macro exposes our PieChartManager class to React Native.
We can now consume a native module called PieChart (without the Manager suffix)
from our JavaScript.

The RCT_EXPORT_VIEW_PROPERTYmacro exposes themember variables on our PieChartView
class as props to React Native. We also provide the types of these props so they can
be marshalled and unmarshalled correctly.

You may see an error 'React/RCTViewManager.h' not found on the
line with the #import "React/RCTViewManager.h". Xcode should find this
dependency during the build process, so the error should disappear once
you build the app in the next step.

Try building!

We won’t be able try our component until we render it from JavaScript, but we can
at least confirm that our Xcode project builds successfully.

In the top left of Xcode:

1. Choose a simulator to build the project on. It’s more difficult to build on a real
device, so we recommend using the simulator for this chapter unless you’re
already set up for building to your device.

2. Click the play button to start the build.

Native Modules 601

Xcode will open a new terminal and start the packager in the root directory of our
app if you don’t have a React Native packager process running on your computer.
This is for convenience – you may also quit the terminal that Xcode opened and
launch a packager process of your own with yarn start as usual.

If everything goes well, after a minute you should see a “Build Succeeded” popup
from Xcode. The simulator you chose before building should launch (this can take
a minute or two) and you should see the default npx react-native init screen
(possibly with slight variations).

Native Modules 602

Wrapping up iOS

We’ve finished creating a native pie chart component for iOS! The next step will be
to consume it from JavaScript. We’ll do that in the JavaScript section of this chapter.

At this point, you can either build the Android version of the pie chart, or skip ahead
to the JavaScript section (recommended) and come back to Android later.

Android

The structure of the android directory (excluding some deeply nested files) looks like
this:

Native Modules 603

android

├── app

│ ├── _BUCK

│ ├── build.gradle

│ ├── build_defs.bzl

│ ├── debug.keystore

│ ├── proguard-rules.pro

│ └── src

├── build.gradle

├── gradle

│ └── wrapper

├── gradle.properties

├── gradlew

├── gradlew.bat

└── settings.gradle

We’ll be opening the android directory in Android Studio. We’ll be adding a few new
Java source files to android/app/src/main/java/com/piechart/. We can ignore the
rest of the files in this directory, which are mainly configuration files.

Java or Kotlin

When working with Android, we have two choices for which language we want to
use: Java or Kotlin. The React Native framework for Android is written in Java, so
the built-in native modules and most of the documentation uses Java. While Kotlin is
more modern and a popular choice for new Android apps, many Android apps today
are still written in Java, so we’ll be using Java for our pie chart example.

Exporting the native view

There are 4 things we need to do in native code to create a new UI component native
module:

1. Define the view that we want to instantiate from JavaScript. This will be a
subclass of android.view.View. In our case, we’ll call this class PieChartView.

Native Modules 604

2. Define the View Manager that will handle the lifecycle of our component. This
will be a subclass of SimpleViewManager<PieChartView>. We’ll call our subclass
PieChartManager.

3. Define a new “package” called PieChartPackage, a subclass of ReactPackage,
that instantiates our View Manager.

4. Register our PieChartPackage at app launch from MainApplication.java.

Exporting the native view

Let’s begin by creating all the Java files we’ll need within Android Studio. Launch
Android Studio now, and choose “Open an existing Android Studio project”.

Select the android directory within the PieChart directory we just created and press
“OK.” It may take Android Studio a minute or two to configure the project.

Next we’ll create a new Java file, PieChartView.java. If you’ve never used Android
studio before, the following diagram depicts the steps to take. First, click the “Project”
tab on the left of the window. Second, choose the “Android” option in the dropdown

Native Modules 605

at the top of the file tree. Third, right click the “piechart” directory. Lastly, choose
“New > Java Class” from the context menu.

Within the dialog that appears, type PieChartView and click “OK.”

Native Modules 606

Repeat this process of creating new files for two more files: PieChartManager.java
and PieChartPackage.java. Once you’ve finished, the file tree should look like this:

Now that we’ve created the files we need, let’s fill them out one by one.

Native Modules 607

PieChartView

We’ll be using a subclass of android.view.View that draws a pie chart based on
the data, strokeWidth, and strokeColor props. React Native doesn’t interact with
view classes directly, so this class could be written any way we want – the member
variables of the view could have completely different names and types from our
props.

Copy the contents of PieChartView.java from the sample directory into your own
PieChartView.java file.

PieChartManager

Now that we have our view class, we need to create a manager class to instantiate
it. Copy the contents of PieChartManager.java from the sample directory into your
own PieChartManager.java file.

This class allows React Native to instantiate our PieChartView class as needed when
we render it from JavaScript. The REACT_CLASS string determines the name of the
component within our JavaScript:

public static final String REACT_CLASS = "PieChart";

In this case, our component will be available as PieChart.

Methods of the PieChartManager handle updating the PieChartView to reflect the
latest props. A method can be registered to handle a specific prop by name using the
@ReactProp annotation:

@ReactProp(name = "strokeWidth", defaultFloat = 0f)

public void setStrokeWidth(PieChartView view, float strokeWidth) {

view.strokeWidth = strokeWidth;

view.invalidate();

}

Native Modules 608

These annotated methods handle converting common JavaScript types to Java types.
For more detail on annotating props, check out this guide in the docs⁸⁸.

Our PieChartView implementation overrides the drawmethod in order to do custom
drawing, so anytime we change a prop, we also call invalidate() to trigger a re-
draw.

Exporting the package

Now that we have our view manager class, we can create a ReactPackage subclass
that registers it with React Native. Copy the contents of PieChartPackage.java from
the sample directory into your own PieChartPackage.java file.

This class can register multiple native modules at once, including both API modules
and UI component modules. We register our PieChartManager using the following:

@Override

public List<ViewManager> createViewManagers(ReactApplicationContext rea\

ctContext) {

return Arrays.<ViewManager>asList(

new PieChartManager()

);

}

Lastly, we’ll register our PieChartPackage class within MainApplication.java.

The getPackages method currently looks like this:

⁸⁸https://facebook.github.io/react-native/docs/native-components-android#3-expose-view-property-setters-using-
reactprop-or-reactpropgroup-annotation

https://facebook.github.io/react-native/docs/native-components-android#3-expose-view-property-setters-using-reactprop-or-reactpropgroup-annotation
https://facebook.github.io/react-native/docs/native-components-android#3-expose-view-property-setters-using-reactprop-or-reactpropgroup-annotation
https://facebook.github.io/react-native/docs/native-components-android#3-expose-view-property-setters-using-reactprop-or-reactpropgroup-annotation

Native Modules 609

@Override

protected List<ReactPackage> getPackages() {

@SuppressWarnings("UnnecessaryLocalVariable")

List<ReactPackage> packages = new PackageList(this).getPackages();

// Packages that cannot be autolinked yet can be added manually here,\

for example:

// packages.add(new MyReactNativePackage());

return packages;

}

Update it to the following:

@Override

protected List<ReactPackage> getPackages() {

List<ReactPackage> packages = new PackageList(this).getPackages();

packages.add(new PieChartPackage());

return packages;

}

This registers our PieChartPackage with React Native.

Try building!

We won’t be able try our component until we render it from JavaScript, but we can
at least confirm that our Android Studio project builds successfully.

We can either build to a real device or an emulator. It’s often quicker and easier to
build to a real device if you have one (and a USB cable) handy. If not, now’s a good
time to set up an emulator. In either case, follow the section titled “Preparing the
Android Device” on the React Native getting started page⁸⁹ for information on how
to set up your real device or emulator. If the website shows the wrong operating
system (e.g. macOS when you’re running Windows) or section, you may need to set
the “Development OS” or “Target OS” toggle at the top of this page again. Follow the
instructions under “Preparing the Android Device” until you reach “Running your
React Native application.”

⁸⁹https://facebook.github.io/react-native/docs/getting-started#preparing-the-android-device

https://facebook.github.io/react-native/docs/getting-started#preparing-the-android-device
https://facebook.github.io/react-native/docs/getting-started#preparing-the-android-device

Native Modules 610

At the top of Android Studio, click the play button:

Next, choose a device or emulator to build the project on and press “OK”:

Native Modules 611

This will build the app, install it on your device, and launch it automatically. Android
Studio doesn’t automatically launch the React Native packager, so once the app
launches you should see a red error screen explaining that it can’t load the script.

Navigate to the root directory of the PieChart app we just created and start the
packager with yarn start as usual. Once this finishes, press the “RELOAD” button
at the bottom of the red screen on your device or emulator.

If everything goes well, you should see the default npx react-native init screen
(possibly with slight variations).

Native Modules 612

JavaScript

Now that we have a native implementation of our pie chart component, we can use
it from JavaScript.

Using the native view from JS

In your text editor, create a new file PieChart.js in the root of our project directory
(at the same level as App.js).

In this file, we’ll import the native pie chart component, and render it from a
new React component. It’s best to wrap a native component within another React
component so that we have the ability to modify component props before they’re
passed to the native component, and so that we can control which imperative APIs
are available on the component class (although in this case we won’t use any).

Let’s begin by importing the following at the top of PieChart.js:

Native Modules 613

PieChart/PieChart.js

import React from 'react';

import PropTypes from 'prop-types';

import {

ColorPropType,

StyleSheet,

ViewPropTypes,

requireNativeComponent,

processColor,

} from 'react-native';

Next, we’ll define a React component called PieChart. This component will wrap the
native component which we’ll import shortly. In the PieChart component, we need
to define the prop types and default props in the exact same way that our native
component expects. So, we need a data, strokeWidth, and strokeColor prop type.
As a reminder, the data prop should be an array of objects, where each object contains
a numeric value and a color string.

Even though we didn’t specify this explicitly in our native code, our native compo-
nent also expects every prop type supported by the built-in React Native View. This
is the default behavior for native components, which allows our native pie chart to
work with layout and gestures just like any other React Native core component.

Create the PieChart class and propTypes now:

PieChart/PieChart.js

export default class PieChart extends React.Component {

static propTypes = {

data: PropTypes.arrayOf(

PropTypes.shape({

value: PropTypes.number,

color: ColorPropType,

}),

).isRequired,

strokeWidth: PropTypes.number,

strokeColor: ColorPropType,

Native Modules 614

...ViewPropTypes,

};

Note that we use the spread syntax, ...ViewPropTypes, to add every prop type from
View to our PieChart component.

Next we’ll add defaultProps:

PieChart/PieChart.js

static defaultProps = {

data: [],

strokeWidth: 0,

strokeColor: 'transparent',

};

requireNativeComponent

Beforewe add the rendermethod to our PieChart component, we first need to import
our native pie chart component. We can do this using the:

requireNativeComponent(viewName, componentInterface) API.

In this case, the viewName will be "PieChart" (since that’s how we exported it from
native code), and the componentInterface will be the PieChart component we just
made. The requireNativeComponentAPI will use the propTypes of our PieChart (the
componentInterface) to ensure that props passed from JavaScript to native code have
the correct names and types.

Let’s add the following line below our PieChart React component definition:

PieChart/PieChart.js

const NativePieChart = requireNativeComponent('PieChart', PieChart);

We’ll be rendering NativePieChart from within the render method of our PieChart
component.

Native Modules 615

Even though we’re declaring NativePieChart below the PieChart class,
we’ll still be able to use it from within the render method. This works the
same way as declaring styles below the component class.

One last thing to do beforewriting our rendermethod: wewant to set the background
of our native pie chart component to "transparent", since native components have
a black background by default. Let’s add a style that handles this for us at the bottom
of the file:

PieChart/PieChart.js

const styles = StyleSheet.create({

container: {

backgroundColor: 'transparent',

},

});

Rendering

Now we can write the render method of our PieChart class. Within the render

method, we’ll render a NativePieChart component, propagating all of the props
passed to PieChart into the NativePieChart.

There are two props thatwe’ll modify before propagating them to the NativePieChart
component:

• data - we need to call processColor on each color within the objects in the
data array. The processColor function converts colors into a format that our
native code can understand. React Native normally handles this conversion
automatically (e.g. for our strokeColor prop), but since our colors are nested
within objects/arrays, we must do it ourselves for the data array. In order to
do this, we’ll map each object in the data array to a new object containing the
converted color.

• style - we want to apply our default styles.container style before any other
styles in order to clear the default background color.

Let’s add the render method now:

Native Modules 616

PieChart/PieChart.js

render() {

const { style, data, ...rest } = this.props;

const processedData = data.map(item => ({

value: item.value,

color: processColor(item.color),

}));

return (

<NativePieChart

{...rest}

style={[styles.container, style]}

data={processedData}

/>

);

}

Save PieChart.js. That wraps up our PieChart component! Now it’s time to render
this component from App.

App

Open App.js. In this component we’ll render the PieChartwith an initial set of data,
and we’ll include a button that randomizes the data.

You may either leave or delete the comment at the top of the file containing the
@format and @flow annotations – we won’t be using these.

The @flow annotation (e.g. in App.js) indicates that the file uses the Flow⁹⁰
static typechecker. Facebook uses this tool for many of their open source
projects, including React Native. For the application code we write, we
don’t need to use it (most people don’t outside of Facebook).

We’ll begin by updating the imports at the top of the file:
⁹⁰https://flow.org/

https://flow.org/
https://flow.org/

Native Modules 617

PieChart/App.js

import React from 'react';

import {

AppRegistry,

StyleSheet,

Text,

View,

Button,

} from 'react-native';

import PieChart from './PieChart';

Next, let’s add a style called chart in the styles object at the bottom of this file. This
style will render our pie chart as a 300x300 square with a margin below it. Update
the styles object now:

PieChart/App.js

const styles = StyleSheet.create({

container: {

flex: 1,

backgroundColor: '#fff',

alignItems: 'center',

justifyContent: 'center',

},

chart: {

width: 300,

height: 300,

marginBottom: 20,

},

});

Now let’s move on to the App component. We’ll add a component state object
containing some initial data to render in the pie chart:

Native Modules 618

PieChart/App.js

state = {

data: [

{ value: 12, color: '#2196F3' },

{ value: 12, color: '#8BC34A' },

{ value: 8, color: '#f44336' },

{ value: 4, color: '#FF9800' },

],

};

We’ll also add a randomize function to this class which randomizes the pie chart’s
data:

PieChart/App.js

randomize = () => {

const { data } = this.state;

this.setState({

data: data.map(slice => ({

value: Math.random() + 0.1,

color: slice.color,

})),

});

};

Finally, we can update the render method. Delete the current placeholder contents
within the rendermethod. Then, render a PieChart component using the styles and
data we just defined, along with a Button below it that calls this.randomize when
pressed.

Native Modules 619

PieChart/App.js

render() {

const { data } = this.state;

return (

<View style={styles.container}>

<PieChart

style={styles.chart}

strokeColor={'white'}

strokeWidth={4}

data={data}

/>

<Button title="Press to randomize" onPress={this.randomize} />

</View>

);

}

Save App.js.

Try it out!

You’ll likely need to manually reload the app on your simulator or device, since live
reload and hot reload are disabled by default in apps created using npx react-native

init.

To reload:

• On a physical device, shake the device until the developer menu appears, then
tap “Reload”.

• On an iOS simulator, press Cmd+R.
• On an Android emulator, press R twice.

Once the app has reloaded, you should see the pie chart on the screen!

Native Modules 620

Try tapping the “Press to randomize” button a few times to make sure the native
component updates correctly whenever props change.

Wrapping up

We just created a native module for both iOS and Android, and bridged it into
React Native. Although bridging a native module is more complex than creating
a JavaScript API or UI component, it can be necessary in order to leverage native
functionality.

As the React Native community has evolved, many native modules have been
published on npm. Creating native modules manually like we did in this chapter
is already significantly less common than it was several years ago. In the future,
more and more apps will likely be built without writing any native code. However,
knowing how to bridge a native module will always be an important skill for a React
Native developer, since the need might arise throughout the lifetime of a project.

In the next chapter, we’ll cover how to publish our apps to the App Store and Play

Native Modules 621

Store.

Building and publishing
After spending some time completing a mobile application, the next natural step is
to share your work with the world! If we want any user to be able to access our
application at any time, we need to build and publish it to an app store. By doing
so, we let users discover and download our application to their device.

How to read this chapter

This chapter serves as a reference for when you need to deploy and distribute a
React Native application. Unlike other chapters, you won’t be following along with
an example application. Feel free to read it now to get an idea of the process and
return later when you’re ready to publish an application of your own.

Shipping an application to an app store is generally a two-step process:

1. Create a native build of our application. This involves generating an IPA (iOS
App Store Package) file for iOS and an APK (Android Package Kit) file for
Android.

2. Publish the build to an app store. App Store Connect⁹¹ and Google Play
Console⁹² are the two platforms used to publish and distribute an iOS and
Android application respectively.

We’ll start with Building. There are two different approaches to creating a build.
We’ll weigh their advantages and disadvantages.

After this section, we suggest you head directly to the section covering the operating
system that you plan on publishing with: iOS or Android.

⁹¹https://developer.apple.com/app-store-connect/
⁹²https://developer.android.com/distribute/console/

https://developer.apple.com/app-store-connect/
https://developer.android.com/distribute/console/
https://developer.android.com/distribute/console/
https://developer.apple.com/app-store-connect/
https://developer.android.com/distribute/console/

Building and publishing 623

Building

We explored how to add native components to a React Native application in the
“Native Modules” chapter. While doing so, we described how to set up the necessary
integrated development environments (IDEs) needed for writing native code. To
develop for iOS, Xcode⁹³ is the required IDE and can only be installed on a Mac
computer. Android Studio⁹⁴ is the official IDE used for Android development.

In order to submit to an App Store, we first need to create a build of our application
that we can publish. If we were building mobile applications without React Native,
we would use the same IDEs that we write native code with to create builds of our
application. With applications built with the Expo CLI, we can create standalone
builds in two different ways:

1. Using the Expo CLI directly
2. Ejecting and creating builds manually through Xcode or Android Studio

Both approaches will allow us to generate iOS and Android builds that we can deploy
to app stores. Each approach has its advantages and disadvantages, which we will
cover in a little bit.

In the next section, we’ll explore how Expo allows us to create standalone builds
using one of its tools. After that, we’ll review the pros and cons for using this
approach as well as the trade-offs for building manually using the IDEs.

Building with Expo

In order to build with the Expo CLI, you need to have an Expo account. You can
create one at https://expo.io/signup⁹⁵. Once your account is set up, you can sign in
directly through the command line:

⁹³https://developer.apple.com/xcode/
⁹⁴https://developer.android.com/studio/
⁹⁵https://expo.io/signup

https://developer.apple.com/xcode/
https://developer.android.com/studio/
https://expo.io/signup
https://developer.apple.com/xcode/
https://developer.android.com/studio/
https://expo.io/signup

Building and publishing 624

expo login

The app.json file is automatically generated in the root directory when creating a
new project with Expo and allows us to modify a number of build configurations.
Although it populates with many fields by default, only a number of attributes are
required for a native build.

{

"expo": {

"name": "Weather",

"slug": "weather",

"sdkVersion": "36.0.0",

"icon": "./assets/icon.png",

"version": "0.1.0",

"platforms": [

"android",

"ios"

]

}

}

• name: The name of the application that shows on the device home screen for
applications installed through an App Store.

• slug: The URL name for published Expo applications. For this configuration,
the URL will look like expo.io/user_name/weather.

• sdkVersion: The Expo sdkVersion that the application is running with. This
needs to match with the installed version in package.json.

• icon: The icon of the application that shows on the device home screen.
• version: The version of your current build.
• platforms: The platforms supported by the application. If this is not specified,
the default values would be ios and android

Building and publishing 625

Although these are the only fields that are required to create native iOS
and Android builds, there are many other configurations that we can add
including defining a splash screen⁹⁶, modifying the app status bar⁹⁷ and
using appropriate and platform specific app icons⁹⁸.

Expo provides an extensive guide⁹⁹ for best practices when creating builds
to publish to App Stores. Further, Expo provides a full list of possible
configurations¹⁰⁰.

Pros and cons of building with Expo

Creating builds with Expo is only possible if we do not plan on including any
custom native code whatsoever. If we need to include any native dependencies in
our application, we have to eject and create our builds manually using Xcode and
Android Studio. If you have already ejected, then skip right ahead to the “Building
Manually” section of this chapter. Otherwise, we highly recommend to use Expo as
it is a much simpler and quicker build process.

The Expo platform supplies a CLI to automate the process of creating a native iOS or
Android build of our application. When building for both iOS and Android, signing
files are required to identify the author of the application. Expo can automatically
generate these files for you. This method allows us to create iOS builds without using
Xcode and without owning a Mac computer. However, Xcode is still required to
publish the build to the iOS App Store.

Another significant advantage of using this approach is over-the-air (OTA) updates.
By default, applications published with Expo will always check for updates when
launched. If a new version of the app has been published with Expo, the updated
build will be fetched and loaded automatically. With this, we can release fixes and
updates to our application without going through the process of publishing a new
version to the App Store. We’ll cover this feature, along with its limitations, in more
detail at the end of this chapter.

⁹⁶https://docs.expo.io/versions/latest/guides/splash-screens.html
⁹⁷https://docs.expo.io/versions/latest/guides/configuring-statusbar.html
⁹⁸https://docs.expo.io/versions/latest/guides/app-icons.html
⁹⁹https://docs.expo.io/versions/latest/guides/app-stores.html
¹⁰⁰https://docs.expo.io/versions/latest/guides/configuration.html

https://docs.expo.io/versions/latest/guides/splash-screens.html
https://docs.expo.io/versions/latest/guides/configuring-statusbar.html
https://docs.expo.io/versions/latest/guides/app-icons.html
https://docs.expo.io/versions/latest/guides/app-stores.html
https://docs.expo.io/versions/latest/guides/configuration.html
https://docs.expo.io/versions/latest/guides/configuration.html
https://docs.expo.io/versions/latest/guides/splash-screens.html
https://docs.expo.io/versions/latest/guides/configuring-statusbar.html
https://docs.expo.io/versions/latest/guides/app-icons.html
https://docs.expo.io/versions/latest/guides/app-stores.html
https://docs.expo.io/versions/latest/guides/configuration.html

Building and publishing 626

A drawback of this approach is the limited control it allows over the build process.
The final bundled build will include every API provided by Expo, regardless of
whether we use them or not. This can result in significantly large build sizes even if
the code that makes up our application is relatively small.

Pros and cons of building manually

We can create builds of our application using the IDE for each platform, Xcode and
Android Studio. The primary advantage of this approach is the capability to add
native iOS and Android code to our application. Building manually also allows us
to take full control over the build process, and this includes modifying any signing
steps and adjusting the final build size ourselves.

The downside is that in order to use an IDE to build our app, we have to eject from
Expo. This means that we will have to own a Mac computer to create an iOS build.
And as mentioned in the previous section, the process of creating builds manually is
much more complicated than using Expo. We recommend taking this approach only
if you need to include native code for your application and own a Mac computer (if
you wish to build for iOS).

As we covered in the last chapter, we have two different options for
ejecting. We can either eject to a regular React Native project, or detach
to ExpoKit. Ejecting to regular React Native means we also lose access to
APIs provided by Expo. Further, we no longer benefit from the platform’s
built-in OTA updates. To push new updates to our users without deploying
a new build version, we’d need to use a tool like Microsoft’s CodePush¹⁰¹.
However, ExpoKit allows us to build with the IDEs while retaining access
to Expo APIs (and OTA updates).

Reference Guide

Now that we’ve outlined our options, the rest of this chapter will be a reference guide
that you can refer to when you need to build and publish a React Native application.
You can skip directly to the operating system that you are currently working with.

¹⁰¹https://github.com/Microsoft/react-native-code-push

https://github.com/Microsoft/react-native-code-push
https://github.com/Microsoft/react-native-code-push

Building and publishing 627

iOS

As we mentioned previously, you can skip directly to the appropriate build method
depending on the state of your application:

• If you have not ejected your application and do not plan on adding any native
dependencies, you can read the next section and skip the section that explains
how to use Xcode to create a build.

• If you have an ejected application, skip the following section and head directly
to “Creating an iOS build with Xcode.”

After using one of the two strategies to create a build, you can head to the “Testing
the final build” section to learn how to test your final build before continuing to read
how to publish to the App Store.

Creating an iOS build with Expo

In order to create builds for iOS applications, you need to enroll in the Apple
Developer Program¹⁰². You can either enroll as an individual or an organization. As
an individual, apps distributed in the App Store are tied to your personal name. As
an organization, apps are tied to a legal entity’s name.

Once we have a developer account set up, we can build a native iOS bundle through
Expo with the following command:

1 expo build:ios

We are then asked how we would like to handle our credentials:

¹⁰²https://developer.apple.com/programs/enroll/

https://developer.apple.com/programs/enroll/
https://developer.apple.com/programs/enroll/
https://developer.apple.com/programs/enroll/

Building and publishing 628

The credentials here refer to signing certificates and a provisioning profile needed
to submit applications to the App Store. We’ll go with the simpler option of letting
Expo handle all of the credentials here, but we will explore what each of these mean
in detail in the next section.

Once we have selected the option for Expo to take care of managing our files, we’ll
need to submit the ID and password for our Apple Developer Account:

Although we specified we want Expo to handle all credentials, we still have the
option to provide overrides for specific certificates. Expo prompts us about these
next. We want Expo to handle both:

Next, the build process will begin and a URL is provided

Building and publishing 629

(e.g. https://expo.io/builds/unique-id).

This URL provides access to the current status of the build and you can follow along
by reading its logs.

Clearing Credentials
Expo will always check if a certificate and provisioning profile exist before
asking whether it should handle creating new files or allow you to provide
them. If you wish to clear the already available credentials, you can run
expo build:ios --clear-credentials.

The build process can take a few minutes to complete. Once completed, another URL
will be provided that contains the generated .ipa build file. Pasting this link into
your browser’s address bar will begin downloading it to your machine.

Creating an iOS build with Xcode

As we mentioned earlier in this chapter, an account with the Apple Developer
Program is necessary in order to create a build ready for distribution. You’ll need
to enroll¹⁰³ if you haven’t already.

Once enrolled, the first thing we’ll need to do is code sign our application. Code
signing is the process of using a digital signature to identify the application author’s
identity. Signatures are used to ensure that updates to an application are published
by the same author.

With Xcode, we have two options for code signing an application:

1. Manually, where we provide all the resources ourselves
2. Automatically, where Xcode takes care of creating all the necessary signing

credentials

Automatic code signing is recommended in the Xcode documentation as it simplifies
the process of creating all the required assets needed for signing. Xcode takes care
of creating all the needed credentials and we only have to provide our developer
account without doing more additional work. With this approach, Xcode will:

¹⁰³https://developer.apple.com/programs/enroll/

https://developer.apple.com/programs/enroll/
https://developer.apple.com/programs/enroll/

Building and publishing 630

• Create the necessary signing certificates
• Create an App ID
• Handle all the provisioning profiles needed

Manually code signing an application means that we will have to create all the
needed assets in the Apple Developer Console and assign them to our application
ourselves. This approach gives us somemore control over which provisioning profiles
and signing certificates we would like to use.

If you don’t need to use a particular profile or certificate for your application, you
should use the recommended approach of automatic code signing. We’ll cover this
first. After reading, feel free to skip the portion of this chapter where we cover how
to manually code sign your application.

If you are interested in learning more about how provisioning profiles and signing
certificates work, or you would like to manually handle these credentials yourself,
then you can head directly to “Manual Code Signing”.

Xcode version 9.1 is used in this chapter. There may be slight inconsistencies to
the UI displayed in the screenshots if you happen to be using a later version of the
software. However, the general procedure should remain the same.

Automatic Code Signing

To access a React Native application usingXcode, we can open the /ios/AppName.xcodeproj
file in our project. An Xcode project file (.xcodeproj) contains all the source files and
resources needed for building and managing a project with the platform.

Once the file is opened with Xcode, you should see your application loaded as the
main target. This is what the default dashboard looks like for an open application:

Building and publishing 631

The bundle identifier in the Identity section of the General tab is a required field and
is a unique string that identifies your application. Once a build of your application is
uploaded for submission, this field cannot be changed. The version and build number
fields also need to be completed and will be used by App Store Connect to identify
different versions of your application.

In the Signing section of the screen, there is a checkbox for Automatically manage

signing. After checking this field, a “Team” drop-down is displayed asking for a
development team that can be used to associate all the created signing credentials.
In order to see your team as one of the drop-down options, you must add an
Apple Developer Account to Xcode. You can add this account by opening Xcode �

Preferences in the main menu.

Once a development team is selected, you should see a signing certificate assigned
to your developer account. Xcode takes care of creating this certificate along with a
provisioning profile and assigns it to your team. With a certificate set up, you can
now head directly to the “Creating a build archive” section to create a build of your

Building and publishing 632

application.

Manual Code Signing

To begin the process of manually code signing, we’ll need to sign in to the Apple
Developer Portal¹⁰⁴.

The Apple Developer Portal provides links to resources, guides and documentation.
There are two important tools provided by the platform that we will be exploring:

• Certificates, Identifiers & Profiles is where we set up signing certificates and
profiles for our application to identify them.

¹⁰⁴https://developer.apple.com/account/

https://developer.apple.com/account/
https://developer.apple.com/account/
https://developer.apple.com/account/

Building and publishing 633

• App Store Connect is a collection of tools that allow us to manage and submit
application builds to the App Store. We will cover how to use this to publish an
application in the next section.

Let’s navigate to Certificates, Identifiers & Profiles and begin by creating an
appropriate signing certificate. Once we are at the certificates¹⁰⁵ screen, clicking the
+ icon on the right hand of the screen will allow you to create a new certificate. Make
sure iOS, tvOS, watchOS is selected in the dropdown in the left navbar.

Signing certificates are digital signatures used to perform actions while ensuring the
application is from the same source and has not been altered with. There are two
certificate types relevant to building and distributing an iOS application:

¹⁰⁵https://developer.apple.com/account/ios/certificate/

https://developer.apple.com/account/ios/certificate/
https://developer.apple.com/account/ios/certificate/

Building and publishing 634

• Development (iOS App Development): Used for the development of an iOS
application and limits the number of devices that the application be installed
on

• Distribution (App Store and Ad Hoc): Used for the distribution of iOS
applications to App Stores or for Ad Hoc distribution

If you need to continue development of a React Native application after ejecting
from the Expo CLI and would like to handle code signing manually, you will need
to create an iOS App Development certificate and register your device. Since this
chapter focuses on distributing an application, we’ll select App Store and Ad Hoc

and click continue.

These are many more certificate types available for other use cases (such
as enabling push notifications or building and distributing a macOS app).
You can see a full list of them in the Xcode docs¹⁰⁶.

The next screen provides instructions to create a Certificate Signing Request (CSR)
file from a Mac computer.

¹⁰⁶https://help.apple.com/xcode/mac/current/#/dev80c6204ec

https://help.apple.com/xcode/mac/current/#/dev80c6204ec
https://help.apple.com/xcode/mac/current/#/dev80c6204ec

Building and publishing 635

A CSR file is a formatted and encrypted file that contains information that identifies
a particular source and is used to issue a certificate. You can follow the instructions
provided to save a CSR file somewhere on your computer. Once that’s done, click
continue to proceed and upload the file. Once uploaded, you should be able to
download the certificate by clicking Download. Double-clicking the certificate file
(.cer format) will save it in your Keychain.

Keychain Access¹⁰⁷ is a Mac application that can store sensitive account
information such as passwords and certificates.

Let’s move on to creating an app identifier. This is also known as theApp ID and is a
unique string that identifies a single application (or multiple applications) connected

¹⁰⁷https://support.apple.com/en-ca/guide/keychain-access/what-is-keychain-access-kyca1083/mac

https://support.apple.com/en-ca/guide/keychain-access/what-is-keychain-access-kyca1083/mac
https://support.apple.com/en-ca/guide/keychain-access/what-is-keychain-access-kyca1083/mac

Building and publishing 636

to a development team. We can do this by navigating to the iOS App IDs¹⁰⁸ screen by
clicking Identifiers/App IDs in the side menu. To register a new App ID, we need
to fill out a few fields:

• App ID Description: Any description of your application can be used here, but
this is usually the same as the name of the app.

• App ID Prefix: This is your Team ID by default.
• App ID Suffix: By changing the suffix of our App ID, we can choose between
its two different types: * An Explicit App ID is used for a single application
and must be unique. A reverse domain naming convention is commonly used
(com.companyname.appname). This option needs to be selected in order to include
most application services such as in-app purchases and push notifications. You
can see a list of all services that can be enabled/disabled at the bottom of the
screen. * A Wildcard App ID can allow a single identifier and provisioning
profile to be used for multiple apps. Many Apple services cannot be included
with this type of ID. Since App IDs cannot be changed for an application
submitted to the App Store, it is important to ensure that this option is only
selected if no such services are included andwill not be in the future. An asterisk
must be the last character of the ID (com.companyname.*) here.

• App Services: In here, you can select any Apple services to include in your
application.

Once a certificate and identifier is created, a provisioning profile needs to be set
up for the application in order to allow it to be downloaded on physical devices. A
provisioning profile is the combination of an application’s unique bundle identifier
and a signing certificate. Without a profile, we cannot run an app on a mobile device.

A distribution provisioning profile is needed when an application is ready to be
distributed to multiple users. To create a distribution provisioning profile, we can
click the Provisioning Profiles –> Distribution¹⁰⁹ list item in the side menu and then
+ on the right hand side of the screen.

¹⁰⁸https://developer.apple.com/account/ios/identifier/bundle
¹⁰⁹https://developer.apple.com/account/ios/profile/production/create

https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/profile/production/create
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/profile/production/create

Building and publishing 637

Of the many possible options, there are two specific types of distribution profiles
relevant to iOS applications:

• App Store: Used to submit an application to the App Store.
• Ad Hoc: Used to distribute applications to multiple testers. Unlike a develop-
ment provisioning profile, an AdHoc profile can not used to debug applications.

Select App Store to create the profile you need to submit an application to the App
Store. In the next few screens, you will need to select the App ID you just created
and the certificates you wish to include in the profile. Once completed, you can name
your provisioning profile and download it to your machine.

Building and publishing 638

While creating a build of an application, a development provisioning
profile uses a development signing certificate to connect developers and
devices to an authorized team. This allows for multiple developers to debug
on more than one device. The process of selecting an App ID and certificate
is the same, but each device’s unique device identifier (UDID) needs to
be explicitly added to the same profile. This can be done in the Apple
Developer Console¹¹⁰.

The final step here is to manually assign our created distribution certificate to our
project in Xcode. We can open the /ios/AppName.xcodeproj file to do this.

The bundle identifier field must be the same as the AppID you created earlier in the
developer console, so you’ll need to make sure that it matches in order to create a
successful build.

To manually take care of assigning a provisioning profile to our application, disable

¹¹⁰https://developer.apple.com/account/ios/profile/

https://developer.apple.com/account/ios/profile/
https://developer.apple.com/account/ios/profile/
https://developer.apple.com/account/ios/profile/

Building and publishing 639

the Automatically manage signing checkbox. Two newer sections, Signing (Debug)

and Signing (Release), will show up underneath. Select the Provisioning Profile

dropdown for our signing release and click Download Profile to download the
distribution profile directly from the Apple Developer Console. We can do the same
for the debug section if we have a development profile created as well.

Creating a build archive

Once all the credentials needed for code signing have been set up, we can create a
build archive of our application. We can begin by changing our device target at the
top of the screen to Generic iOS Device.

Building and publishing 640

For an ejected Expo application, we can run our application on different
simulators using the react-native run-ios --simulator="iPhone 8"

command.We can also use this device target menu on Xcode to do the same
thing (as well as preview our application on a physical device plugged in
to our computer).

The Generic iOS Device target is only used to create an iOS device build. With this
target selected, we can select Product � Archive to create a build archive. After a
fewminutes, a window showing all past archives will pop up. Clicking Export on the
right hand side and selecting App Store as our method for distribution will allow us

Building and publishing 641

to export an .ipa file of our application. Instead of doing this however, we can also
submit directly to App Store Connect by clicking Upload to App Store. We’ll cover
the flow of this process in the next section.

Testing the final build

Since we signed the iOS build we created earlier in this chapter with an App
Store distribution certificate, it cannot be downloaded and run on a personal
simulator/device for testing purposes through Xcode. To allow for this, we can use
TestFlight¹¹¹. TestFlight is an Apple platform that allows others to download and test
a production build on their devices. Instructions for using TestFlight to invite users
to test your production build can be found on the TestFlight website¹¹².

Publishing to the iOS App Store

Submitting and managing application builds for iOS can be done in App Store
Connect¹¹³. You can sign in with your developer account.

¹¹¹https://developer.apple.com/testflight/
¹¹²https://itunespartner.apple.com/en/apps/videos#testflight-beta-testing
¹¹³https://developer.apple.com/app-store-connect/

https://developer.apple.com/testflight/
https://itunespartner.apple.com/en/apps/videos#testflight-beta-testing
https://developer.apple.com/app-store-connect/
https://developer.apple.com/app-store-connect/
https://developer.apple.com/testflight/
https://itunespartner.apple.com/en/apps/videos#testflight-beta-testing
https://developer.apple.com/app-store-connect/

Building and publishing 642

App Store Connect provides a collection of tools that developers can use to manage
their applications, view user analytics, study trends and patterns as well as view
financial results. Let’s navigate to My Apps to view a dashboard of all the applications
tied to your developer account. Nothing will show here if you haven’t submitted an
application before.

Click the + icon on the top left to add a new application. We’ll need to fill out a form
with a few fields:

• Platform: Select whether you’re creating a new iOS or tvOS application.
• Name: This is the display name of your application in the App Store.
• Primary Language: The main language your application is localized for.

Building and publishing 643

• Bundle ID: The unique identifier for your application. If you let Xcode automat-
ically code sign your application or Expo handle creating credentials for you,
you should see the ID for your application in the dropdown. If you don’t see it,
you may have to create your App ID manually in the Developer Portal¹¹⁴.

• SKU: This is the Stock Keeping Unit¹¹⁵, an identifier commonly used for
inventory and financial tracking. It also needs to be unique to each application,
and you can use the same string as your bundle ID if you like.

Clicking Create will create our application on the platform.

¹¹⁴https://developer.apple.com/account/ios/identifier/bundle
¹¹⁵https://www.investopedia.com/terms/s/stock-keeping-unit-sku.asp

https://developer.apple.com/account/ios/identifier/bundle
https://www.investopedia.com/terms/s/stock-keeping-unit-sku.asp
https://developer.apple.com/account/ios/identifier/bundle
https://www.investopedia.com/terms/s/stock-keeping-unit-sku.asp

Building and publishing 644

We can add more general information here such as the application’s subtitle, privacy
policy link, and categories. On the left side of the screen, you’ll notice that the current
status of our application’s submission process is 1.0 Prepare for Submission. 1.0
refers to the version of the application, and this number will change once we upload
newer build versions. Clicking the link in the side menu will navigate to another
form that allows us to provide version-specific information of our application. This
includes:

• iPhone and iPad application previews and screenshots
• Promotional text
• Keywords
• App description
• App Store Icon
• App review information

All of this information can be modified at any time by submitting updated builds of
an application.

In the Build section of the screen, you’ll see a message letting you know that you
can submit builds directly using Xcode.

Every iOS application that is published to the App Store goes through an extensive
review process before being accepted. To improve your chance of being accepted,
there are a few resources you can consider before submitting an application:

• Apple’s Review Guidelines¹¹⁶
• Xcode’s docs on App Store distribution¹¹⁷

¹¹⁶https://developer.apple.com/app-store/review/guidelines
¹¹⁷https://help.apple.com/xcode/mac/current/#/dev91fe7130a

https://developer.apple.com/app-store/review/guidelines
https://help.apple.com/xcode/mac/current/#/dev91fe7130a
https://developer.apple.com/app-store/review/guidelines
https://help.apple.com/xcode/mac/current/#/dev91fe7130a

Building and publishing 645

• Expo’s docs on app stores¹¹⁸

In Xcode’s Window � Organizer screen, you can see a list of previously created
build archives of your application. This is what the screen looks like when you have
multiple builds:

Before we upload our build archive to the App Store, we can validate it to ensure that
our build files pass all the validation checks performed by App Store Connect. We
can do this by clicking the Validate button in the menu on the right. If any necessary
configurations or assets are missing, Xcode will give us an error here.

If our build archive is validated successfully, we can move on to clicking Upload

to App Store. After selecting the correct development team, we’ll see an Upload

Successful message if there were no issues with the archive.

It can take a few minutes for the build archive to show up in App Store Connect.

¹¹⁸https://docs.expo.io/versions/v27.0.0/distribution/app-stores.html

https://docs.expo.io/versions/v27.0.0/distribution/app-stores.html
https://docs.expo.io/versions/v27.0.0/distribution/app-stores.html

Building and publishing 646

Once it does, you should see it in the Activity tab of the application. Moreover, the
Build section of our submission will now show a different message - Select a build

before you submit your app. Clicking the link will display a list of available builds.

After the build shows up on App Store Connect, it may still need to finish
processing which can take a little more time. At this point, you’ll see a
(Processing) message next to your build and you’ll only be able to select
it for submission once it completes.

Once you select your build and complete all the necessary information for your
application, you can submit it using the Submit for Review button. According
to Apple’s support documentation¹¹⁹, review times vary. Half of all applications
submitted are reviewed within 24 hours and over 90% are reviewed within 48 hours.
The status of the application in App Store Connect will be In Review until it is
completed.

If your application requires any form of authentication in order to be used,
you should also provide sign-in information for a dummy account in App
Store Connect’s submission form. Without this information, an application
may not be able to be reviewed.

Android

As we mentioned previously, you can skip directly to the build approach that is more
relevant for your application:

• If you have not ejected your application from Expo, you can read the next
section and skip the section that explains how to create a build manually

• If you have an ejected application, skip the following section entirely and head
directly to “Creating an Android build manually”

After using the appropriate strategy to create a build, we’ll discuss how to publish
your application in the “Publishing to the Play Store” section.

¹¹⁹https://developer.apple.com/support/app-review/#app-review-status

https://developer.apple.com/support/app-review/#app-review-status
https://developer.apple.com/support/app-review/#app-review-status

Building and publishing 647

Creating an Android build with Expo

We can start a build process for Android with the following command:

1 exp build:android

We are then asked if we would like Expo to take care of creating a keystore or
uploading it ourselves:

A keystore is a file that contains private keys used to authenticate oneself. We’ll
explore this in more detail when we build an Android application manually later in
this chapter, so we’ll go with the option of letting Expo take care of it here.

Next, the build process begins and can take a few minutes to complete. As with
the iOS build process, a URL (https://expo.io/builds/unique-id) is provided that
shows real-time logs from Android Studio. Once the build process is finished, we’re
provided a URL that contains the final .apk build file. We can download the file by
pasting the link into our browser’s address bar.

Clearing Credentials
A keystore file is used to represent the application owner’s identity, so
keeping it secure is extremely important. Moreover, we cannot submit
updates to our application and publish new versions if we lose our keystore
file. We can clear a previously generated keystore used by Expo with expo

build:android --clear-credentials but it is important to make sure we
have fetched and stored a local version of the keystore file first. We can do
that with expo fetch:android:keystore.

Building and publishing 648

Testing the final build after automatic signing

There are two different ways to test the final build of your application:

1. On an emulator.You can drag and drop the final build .apk to have it boot up
automatically.

2. On a physical device. You will have to first install Android Platform Tools¹²⁰
to your computer. This includes Android Debug Bridge (adb), a command-
line interface that allows you to control an Android device connected to your
machine. Once installed, you can run adb install apk-file-name.apk with
your device plugged in.

After setting up and testing your final application’s build file, you can head directly
to the “Publishing to the Play Store” section to learn how to publish your application
as well as distribute testing versions through different channels.

Creating an Android build manually

In order to code sign an Android application with a certificate, the build process
requires a keystore that contains an app signing key. This is done to ensure the
source has not changed if any updates are done to the application. There are two
different ways to create an Android keystore for an ejected React Native application:

1. Using Java Keytool
2. Using Android Studio

Using Java’s Keytool application can be quicker and is the approach mentioned in
the React Native documentation. For that reason, we’ll explain the process of using
it here. However, instructions to create a keystore using Android Studio can also be
found in the Android Studio docs¹²¹ if you prefer that approach.

Keytool¹²² is a command-line tool already included in the Java Development Kit that
simplifies the management of keys and certificates. It can be used to create a keystore
containing an app signing key used to sign an Android build.

¹²⁰https://developer.android.com/studio/releases/platform-tools
¹²¹https://developer.android.com/studio/publish/app-signing#generate-key
¹²²https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html

https://developer.android.com/studio/releases/platform-tools
https://developer.android.com/studio/publish/app-signing#generate-key
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
https://developer.android.com/studio/releases/platform-tools
https://developer.android.com/studio/publish/app-signing#generate-key
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html

Building and publishing 649

The Java Development Kit (JDK) is a development environment to run
and develop applications built with Java. It is required to build Android
applications with React Native and you should already have it installed
after ejecting and following the instructions¹²³ to build native Android
code.

For Unix-like operating systems such as macOS and Linux, the keytool directory
is added directly to the $PATH variable of our system. This means we can run the
command in any directory as an executable. If you are using a Windows machine,
you can only run keytool commands in C:\Program Files\Java\jdk1.x.x_xxx\bin

where 1.x.x_xxx is the version of JDK installed on your machine.

We can generate a keystore with a single key using the following command in our
terminal:

$ keytool -genkey -v -keystore android-release.keystore -alias android-\

release-alias -keyalg RSA -keysize 2048 -validity 10000

The command contains a number of settings that would apply to our generated
keystore:

• -keystore: The name of the keystore file. In here, the file would be named
android-release.keystore.

• -alias: The keystore alias is its unique identifier and is used to code sign the
application. Our alias here is android-release-alias.

• -keyalg: Defines the algorithm used to create a public-private key pair in our
keystore. RSA is commonly used, but you can find out about all the possible
options in more detail by referring to Java’s cryptography architecture guide¹²⁴.

• -keysize: Specifies the size of the created key. In short, key size is used in
cryptography to define the number of bits in a key used in an algorithm. In
here, we’ve specified 2048 bits (which represents 256 bytes).

• -validity: The length of time our key will be valid in days. We’ve set our
validity to 10000 days here.

¹²³https://facebook.github.io/react-native/docs/getting-started.html#java-development-kit
¹²⁴https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html#AppA

https://facebook.github.io/react-native/docs/getting-started.html#java-development-kit
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html#AppA
https://facebook.github.io/react-native/docs/getting-started.html#java-development-kit
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html#AppA

Building and publishing 650

These parameters are all we need to generate a working keystore for our
application. You can see a full list of possible configurations by typing
keytool usage: to your terminal.

Running the command will then prompt for passwords for the keystore and signing
key, as well as the Distinguished Name fields for your key. Once provided, an
android-release.keystore file will be created in the current directory.

Due to the fact that a keystore represents an application owner’s identity, it is
extremely important to remember to keep a keystore file secure. If the file is lost,
updates to an application in the Play Store cannot be performed and a new app will
have to be created and submitted. If the file is compromised or stolen, an attacker
can publish a newer version of your application with malicious code. It’s considered
best practice to avoid committing a keystore to your version control system, like Git.

We need to place our keystore file in the android/app directory of our project. Once
that is done, we can configure the Gradle build process by adding our keystore
and key information. Properties that modify the build process can be added to the
android/app/.gradle/gradle.properties file. Let’s add the following to the bottom
of the file:

APP_RELEASE_KEYSTORE_FILE=android-release.keystore

APP_RELEASE_KEYSTORE_PASSWORD=YOUR_KEYSTORE_PASSWORD_GOES_HERE

APP_RELEASE_KEY_ALIAS=android-release-alias

APP_RELEASE_KEY_PASSWORD=YOUR_SIGNING_KEY_PASSWORD_GOES_HERE

Gradle¹²⁵ is an extensible and configurable build system used by Android
to automate and manage the entire build process. Instead of configuring
Gradle to sign our application, we also have the option of signing it
manually¹²⁶ using the apksigner¹²⁷ tool provided by Android Studio.

Since these properties will need to be referenced in our build file, you can choose
any key name for each of these key:value pairs.

¹²⁵https://gradle.org/
¹²⁶https://developer.android.com/studio/publish/app-signing#sign-manually
¹²⁷https://developer.android.com/studio/command-line/apksigner

https://gradle.org/
https://developer.android.com/studio/publish/app-signing#sign-manually
https://developer.android.com/studio/command-line/apksigner
https://gradle.org/
https://developer.android.com/studio/publish/app-signing#sign-manually
https://developer.android.com/studio/command-line/apksigner

Building and publishing 651

In the above example, we added the username and password of both the
signing key and keystore in plain text to the Gradle properties file. This can
be dangerous if you are working on a project with multiple team members
or if you submit your project to an open source platform.

In these conditions, there are a few options that can be performed to keep
this sensitive information outside of this file:

1. Create a separate keystore.properties file to contain this informa-
tion which can be accessed in the application’s build file. Instructions
to set this up can be found in the Android Studio docs¹²⁸. The
properties file should not be committed to version control and can
be added to the .gitignore file of the project so it is ignored by Git.

2. For macOS users, the credentials can be stored in Keychain Access
and loaded directly in the build file. Instructions can be found on this
page: https://pilloxa.gitlab.io/posts/safer-passwords-in-gradle/¹²⁹.

Once our signing credentials are added to our Gradle properties, we can access them
in our build file to complete the signing process. We can apply configurations to
the build process by adding them to the android/app/build.gradle file. Default
configurations are added to this file as soon as we create a new Android project.

Let’s add a signing configuration to the android block within this file underneath
our default configurations:

android {

// ...

defaultConfig {

// ...

}

signingConfigs {

release {

if (

project.hasProperty('APP_RELEASE_KEYSTORE_FILE')

¹²⁸https://developer.android.com/studio/publish/app-signing#generate-key
¹²⁹https://pilloxa.gitlab.io/posts/safer-passwords-in-gradle/

https://developer.android.com/studio/publish/app-signing#generate-key
https://pilloxa.gitlab.io/posts/safer-passwords-in-gradle/
https://developer.android.com/studio/publish/app-signing#generate-key
https://pilloxa.gitlab.io/posts/safer-passwords-in-gradle/

Building and publishing 652

) {

storeFile file(APP_RELEASE_KEYSTORE_FILE)

storePassword APP_RELEASE_KEYSTORE_PASSWORD

keyAlias APP_RELEASE_KEY_ALIAS

keyPassword APP_RELEASE_KEY_PASSWORD

}

}

}

buildTypes {

release {

//. ..

signingConfig signingConfigs.release

}

}

}

We’ll nowneed to assign our newly created configurations as the release signingConfig
of the build process:

android {

// ...

defaultConfig {

// ...

}

signingConfigs {

// ...

}

buildTypes {

release {

// ...

signingConfig signingConfigs.release

}

}

}

And that completes our signing process! We can now navigate to the android/

directory and bundle our application into a build:

Building and publishing 653

cd android

./gradlew assembleRelease

Starting any Gradle build is done with the Gradle Wrapper¹³⁰, a command-line
tool we can use at the root of any Android project with /gradlew task-name.
The assembleRelease command will bundle (or assemble) all the core JavaScript
code into the final build. This file can be found as a app-release.apk file in the
android/app/build/outputs/apk/ directory.

Instead of adding signing information to our Gradle properties, we can also
manually sign an application using Android Studio¹³¹ or configure the build
process¹³² to automatically sign any application. Both of these approaches
will have the same end result.

Testing the final build after manually signing

With an Android emulator running or a physical device connected to our machine,
we can install a production build of our application with the following command:

react-native run-android --variant=release

Aside from this, we can also publish alpha and beta versions of our app to a closed or
open group of testers before submitting it to the Play Store. This is covered in more
detail in the next section.

Publishing to the Play Store

In order to publish and manage Android applications with Google Play Console¹³³,
we’ll need to create a Google Developer account¹³⁴ which requires a one-time
payment.

¹³⁰https://docs.gradle.org/current/userguide/gradle_wrapper.html
¹³¹(https://developer.android.com/studio/publish/app-signing#release-mode)
¹³²https://developer.android.com/studio/publish/app-signing#sign-auto
¹³³https://developer.android.com/distribute/console/
¹³⁴https://play.google.com/apps/publish/signup

https://docs.gradle.org/current/userguide/gradle_wrapper.html
(https://developer.android.com/studio/publish/app-signing#release-mode)
https://developer.android.com/studio/publish/app-signing#sign-auto
https://developer.android.com/studio/publish/app-signing#sign-auto
https://developer.android.com/distribute/console/
https://play.google.com/apps/publish/signup
https://docs.gradle.org/current/userguide/gradle_wrapper.html
(https://developer.android.com/studio/publish/app-signing#release-mode)
https://developer.android.com/studio/publish/app-signing#sign-auto
https://developer.android.com/distribute/console/
https://play.google.com/apps/publish/signup

Building and publishing 654

Once we launch the console, we can click Create Application to begin the process
of submitting an application to the Play Store.

The first few fields we need to fill out are the application’s default language and title.

Once completed, we land on the Store listing page. This page allows us to specify
the content in our app’s listing in the Play Store. Parameters include:

• App description
• Graphic assets such as screenshots, icons and banners
• Application type and relevant category
• Privacy policy link

The left-side menu contains links to other areas of our application such as setting up
the price of a paid application, its places of distribution, and its content rating.

The Android doc’s Launch Checklist¹³⁵ is a great resource on a number of
best practices.

The App Releases link in the menu is where we can manage uploading the APK
builds of our application. We can roll out new builds in a number of different
channels:

• Internal test: Used to quickly publish builds for internal testing with a small
number of testers.

• Closed (alpha): Used to publish builds for closed testing. This is useful to test
your application with a larger number of privately invited testers.

• Open (beta): Used to publish builds for open testing. Anybody can join this
testing program and provide private feedback to the author of the application.

• Production: Used to publish final production builds to the Google Play Store.

¹³⁵https://developer.android.com/distribute/best-practices/launch/launch-checklist

https://developer.android.com/distribute/best-practices/launch/launch-checklist
https://developer.android.com/distribute/best-practices/launch/launch-checklist

Building and publishing 655

With any of these build tracks, we can upload an APK file by clicking Manage and
then Create Release. In here, we have the option of using App Signing by Google
Play instead of managing our signing keys manually. Enabling this feature will mean
that the signing key within the keystore used for your application will be handled as
an upload key. If we opt-in to this feature, we will have to publish a new application
if our key is lost or compromised.

There are a few more noteworthy parameters we need to specify. The first is the
release name. This is not visible to users and is used to distinguish separate releases
in the Play Store. It is recommended to use the version of the APK here or an internal
code name relevant to this release.

The second is release notes. We use release notes to explain modifications to the
app in this release. After this, we can upload the final signed .apk build file
(app-release.apk in the android/app/build/outputs/apk/ directory) and review
our submission before rolling it out! If you decided to roll out a production build, the
application should show up in the Play Store in a few hours.

Handling Updates

Expo supports over-the-air (OTA) updates by default. Every standalone application
built with Expo will know how to reference updates to an application based on its
URL (expo.io/user_name/APP_NAME). Once an Expo-built application is published to
the iOS App Store or Google Play Store and installed on a user’s mobile device, we
can distribute any updates to the application using the following command:

expo publish

This command allows us to publish directly with Expo. When the app is re-launched
on a user’s device, the new version of the application will be automatically down-
loaded and displayed. With this, we can publish newer updates without distributing
new build versions to app stores.

Publishing with Expo can also allow Android users to test and demo
their application without having to go through the Play Store submission
process. You can refer to the Appendix to get a better idea of how this
works.

Building and publishing 656

OTA updates only workwhen JavaScript code is modified.We cannot use this feature
if we eject to a regular React Native project. In this scenario, we can use a similar
third-party tool like Microsoft’s CodePush¹³⁶. This will allow us to still benefit from
publishing changes to our JavaScript bundle without deploying to an app store.
However, we need to be careful to not publish newer JavaScript code over-the-air
that bridges functionality to native modules.

In order to comply with Apple’s review process, it is important to make sure that
only specific fixes/modifications that are in-line with the general direction of the
application are included in OTA updates. Section 3.3.2 in the Apple Developer
Program License Agreement¹³⁷ states that only code that does not change the
initial purpose of the application and does not bypass any iOS security features are
permitted.

Summary

We began the journey of learning React Native by building a weather app in the first
chapter of this book. With each subsequent chapter, we learned about important
React fundamentals, explored all of the core components and APIs provided by the
framework, and covered advanced topics such as animations and gesture controls.
We spent an entire chapter learning how to apply different navigation patterns to an
application and even investigated how to build custom native modules and bridge
to them ourselves. If you’ve reached this point of the book, you have all the tools
you need to both build and publish a fully functional and powerful React Native
application. Give yourself a pat on the back!

As the authors, we hope you enjoyed reading this book as much as we enjoyed
writing it!

¹³⁶https://github.com/Microsoft/react-native-code-push
¹³⁷https://developer.apple.com/services-account/download?path=/Documentation/License_Agreements__Apple_

Developer_Program/Apple_Developer_Program_License_Agreement_20180604.pdf

https://github.com/Microsoft/react-native-code-push
https://developer.apple.com/services-account/download?path=/Documentation/License_Agreements__Apple_Developer_Program/Apple_Developer_Program_License_Agreement_20180604.pdf
https://developer.apple.com/services-account/download?path=/Documentation/License_Agreements__Apple_Developer_Program/Apple_Developer_Program_License_Agreement_20180604.pdf
https://github.com/Microsoft/react-native-code-push
https://developer.apple.com/services-account/download?path=/Documentation/License_Agreements__Apple_Developer_Program/Apple_Developer_Program_License_Agreement_20180604.pdf
https://developer.apple.com/services-account/download?path=/Documentation/License_Agreements__Apple_Developer_Program/Apple_Developer_Program_License_Agreement_20180604.pdf

Appendix
JavaScript Versions

JavaScript is the language of the web. It runs on many different browsers, like Google
Chrome, Firefox, Safari, Microsoft Edge, and Internet Explorer. React Native takes
this one step further and allows us to write JavaScript to communicate with native
iOS and Android components.

Its widespread adoption as the internet’s client-side scripting language led to the
formation of a standards body which manages its specification. The specification is
called ECMAScript or ES.

The 5th edition of the specification is called ES5. You can think of ES5 as a version of
the JavaScript programming language. The 6th edition, ES2015, was finalized in 2015
and is a significant update. It contains a whole host of new features for JavaScript.
JavaScript written in ES2015 is tangibly different than JavaScript written in ES5.

ES2016, a much smaller update that builds on ES2015, was ratified in June 2016.

ES2015 is sometimes referred to as ES6. ES2016, in turn, is often referred to
as ES7.

ES2015

Arrow functions

There are three ways to write arrow function bodies. For the examples below, let’s
say we have an array of city objects:

Appendix 658

const cities = [

{ name: 'Cairo', pop: 7764700 },

{ name: 'Lagos', pop: 8029200 },

];

If we write an arrow function that spans multiple lines, we must use braces to delimit
the function body like this:

const formattedPopulations = cities.map((city) => {

const popMM = (city.pop / 1000000).toFixed(2);

return popMM + ' million';

});

console.log(formattedPopulations);

// -> ["7.76 million", "8.03 million"]

Note that we must also explicitly specify a return for the function.

However, if we write a function body that is only a single line (or single expression)
we can use parentheses to delimit it:

const formattedPopulations2 = cities.map((city) => (

(city.pop / 1000000).toFixed(2) + ' million'

));

Notably, we don’t use return as it’s implied.

Furthermore, if your function body is terse you can write it like so:

const pops = cities.map(city => city.pop);

console.log(pops);

// [7764700, 8029200]

The terseness of arrow functions is one of two reasons that we use them. Compare
the one-liner above to this:

Appendix 659

const popsNoArrow = cities.map(function(city) { return city.pop });

Of greater benefit, though, is how arrow functions bind the this object.

The traditional JavaScript function declaration syntax (function () {}) will bind
this in anonymous functions to the global object. To illustrate the confusion this
causes, consider the following example:

function printSong() {

console.log("Oops - The Global Object");

}

const jukebox = {

songs: [

{

title: "Wanna Be Startin' Somethin'",

artist: "Michael Jackson",

},

{

title: "Superstar",

artist: "Madonna",

},

],

printSong: function (song) {

console.log(song.title + " - " + song.artist);

},

printSongs: function () {

// `this` bound to the object (OK)

this.songs.forEach(function(song) {

// `this` bound to global object (bad)

this.printSong(song);

});

},

}

jukebox.printSongs();

Appendix 660

// > "Oops - The Global Object"

// > "Oops - The Global Object"

The method printSongs() iterates over this.songs with forEach(). In this con-
text, this is bound to the object (jukebox) as expected. However, the anonymous
function passed to forEach() binds its internal this to the global object. As such,
this.printSong(song) calls the function declared at the top of the example, not the
method on jukebox.

JavaScript developers have traditionally used workarounds for this behavior, but
arrow functions solve the problem by capturing the this value of the enclosing
context. Using an arrow function for printSongs() has the expected result:

function printSong() {

console.log("Oops - The Global Object");

}

const jukebox = {

songs: [

{

title: "Wanna Be Startin' Somethin'",

artist: "Michael Jackson",

},

{

title: "Superstar",

artist: "Madonna",

},

],

printSong: function (song) {

console.log(song.title + " - " + song.artist);

},

printSongs: function () {

this.songs.forEach((song) => {

// `this` bound to same `this` as `printSongs()` (`jukebox`)

this.printSong(song);

});

Appendix 661

},

}

jukebox.printSongs();

// > "Wanna Be Startin' Somethin' - Michael Jackson"

// > "Superstar - Madonna"

For this reason, throughout the book we use arrow functions for all anonymous
functions.

Classes

JavaScript is a prototype-based language where classes, which is common in many
object-oriented languages, were not used. However, ES2015 introduced a class
declaration syntax. For example:

1 class Ball {

2 constructor(color) {

3 this.color = color;

4 }

5

6 details() {

7 return 'This ball is ' + this.color + '!';

8 }

9 }

10

11 class SoccerBall extends Ball {

12 kick() {

13 return 'This ' + this.color + 'soccer ball is kicked!';

14 }

15 }

This isn’t a brand new JavaScript model, but only a simpler way to define object
oriented structures instead of using prototypal-based inheritance. For context, let’s
take a look at how this would probably look like without using a class definition:

Appendix 662

1 function Ball(color) {

2 this.color = color;

3 }

4

5 Ball.prototype.details = function details() {

6 return 'This ball is ' + this.color + '!';

7 };

8

9 function SoccerBall(color) {

10 Ball.call(this, color);

11 }

12

13 SoccerBall.prototype = Object.create(Ball.prototype);

14 SoccerBall.prototype.constructor = Ball;

15

16 SoccerBall.prototype.kick = function () {

17 return 'This ' + this.color + 'soccer ball is kicked!';

18 }

We won’t be going into more detail explaining object oriented paradigms and
structures in JavaScript, but it’s important to realize that creating objects with
properties can be simpler with classes. The important thing to note here is that we
use this exact same model to create our React Native components.

If you’d like to learn more about ES6 classes, refer to the docs on MDN¹³⁸.

Shorthand property names

In ES5, all objects were required to have explicit key and value declarations:

¹³⁸https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

Appendix 663

const getState = () => {};

const dispatch = () => {};

const explicit = {

getState: getState,

dispatch: dispatch,

};

In ES2015, you can use this terser syntax whenever the property name and variable
name are the same:

const getState = () => {};

const dispatch = () => {};

const implicit = {

getState,

dispatch,

};

Lots of open source libraries use this syntax, so it’s good to be familiar with it. But
whether you use it in your own code is a matter of stylistic preference.

Destructuring Assignments

For arrays

In ES5, extracting and assigning multiple elements from an array looked like this:

var fruits = ['apples', 'bananas', 'oranges'];

var fruit1 = fruits[0];

var fruit2 = fruits[1];

In ES6, we can use the destructuring syntax to accomplish the same task like this:

Appendix 664

const [veg1, veg2] = ['asparagus', 'broccoli', 'onion'];

console.log(veg1); // -> 'asparagus'

console.log(veg2); // -> 'broccoli'

The variables in the array on the left are “matched” and assigned to the corresponding
elements in the array on the right. Note that 'onion' is ignored and has no variable
bound to it.

For objects

We can do something similar for extracting object properties into variables:

const smoothie = {

fats: ['avocado', 'peanut butter', 'greek yogurt'],

liquids: ['almond milk'],

greens: ['spinach'],

fruits: ['blueberry', 'banana'],

};

const { liquids, fruits } = smoothie;

console.log(liquids); // -> ['almond milk']

console.log(fruits); // -> ['blueberry', 'banana']

Parameter context matching

We can use these same principles to bind arguments inside a function to properties
of an object supplied as an argument:

Appendix 665

const containsSpinach = ({ greens }) => {

if (greens.find(g => g === 'spinach')) {

return true;

} else {

return false;

}

};

containsSpinach(smoothie); // -> true

We can also do this with functional React components.

ReactElement

React Native allows us to build applications with a fake representation of the native
views rendered in our mobile device. A ReactElement is a representation of a
rendered element.

Consider this JavaScript syntax:

React.createElement(Text, { style: { color: 'red' }},

'Hello, friend! I am a basic React Native component.'

)

Which can be represented in JSX as:

<Text style={{ color: 'red' }}>

Hello, friend! I am a basic React Native component.

</Text>

The code readability is slightly improved in the latter example. This is exacerbated
in a nested tree structure:

Appendix 666

React.createElement(View, {},

React.createElement(Text, { style: { color: 'red' }},

'Hello, friend! I am a basic React Native component.'

)

)

In JSX:

<View>

<Text style={{ color: 'red' }}>

Hello, friend! I am a basic React Native component.

</Text>

</View>

Overall, JSX presents a light abstraction over the JavaScript version, yet the legibility
benefits are huge. Readability boosts our app’s longevity and makes it easier to
onboard new developers.

Handling Events in React Native

Using bind statements within a render()method and property initializers aren’t the
only ways to handle events. We can also take care of binding our event handlers in
a class constructor:

export default class SearchInput extends React.Component {

constructor() {

super();

this.handleChangeText = this.handleChangeText.bind(this);

}

handleChangeText(newLocation) {

// We need to do something with newLocation

}

Appendix 667

render() {

const { placeholder } = this.props;

return (

<TextInput

placeholder={placeholder}

placeholderTextColor="white"

style={styles.textInput}

clearButtonMode="always"

onChangeText={this.handleChangeText}

/>

);

}

}

Instead of using a constructor to bind our method, we can also also leverage ES6
arrow syntax to achieve the same effect:

export default class SearchInput extends React.Component {

handleChangeText(newLocation) {

// We need to do something with newLocation

}

render() {

const { placeholder } = this.props;

return (

<TextInput

placeholder={placeholder}

placeholderTextColor="white"

style={styles.textInput}

clearButtonMode="always"

onChangeText={text => this.handleChangeText(text)}

/>

);

Appendix 668

}

}

Notice how this simplifies our syntax where we don’t need to continously set up bind
for each of our event handlers. We’re specifically using ES6 arrow syntax to pass in
the callback:

onChangeText={text => this.handleChangeText(text)}

In most cases this is just fine, but it’s important to realize that this callback will
instantiate every time TextInput here is rendered. This will also be the case if
we use bind statements within our component JSX like we did previously. In
most applications, this is unlikely to pose any noticeable performance issues due
to additional re-rendering. However, binding our member methods within the
constructor actually prevents this from happening.

This is where using property initializers can come in handy:

export default class SearchInput extends React.Component {

handleChangeText = newLocation => {

// We need to do something with newLocation

}

render() {

const { placeholder } = this.props;

return (

<TextInput

placeholder={placeholder}

placeholderTextColor="white"

style={styles.textInput}

clearButtonMode="always"

onChangeText={this.handleChangeText}

/>

);

}

}

Appendix 669

By using this pattern, we can remove some boilerplate within our constructormethod
as well as handle events in a cleaner fashion without causing additional re-renders.

Higher-Order Components

A Higher-Order Component (or HOC, for short) sounds complex, but the idea is
simple: we want a way to add common functionality (e.g data fetching or drag-and-
drop) to many different components. To do this, we write a function that takes an
existing component and wraps it in an enhanced component. Instead of changing
the code of original component, a higher-order component allows us to change the
functionality by controlling how and when we show the original component.

In code, a HOC is conceptually straightforward as well. To create a HOC, we’ll create
a function that accepts a component to wrap:

const Enhance = OriginalComponent => {

return props => <OriginalComponent {...props} />;

};

It looks like there is a lot going on in the Enhance function, but it’s pretty simple. The
function accepts an OriginalComponent argument and returns a stateless component
function.

JSX spread syntax

We cover spread syntax, {...props}, in the “React Fundamentals” chapter,
but we haven’t mentioned we can also use it for component props. Instead
of having to know all of the key-value pairs in the props, the spread syntax
takes each of the props and sets them as key-value pairs automatically.

For instance, if we have a props object that has two keys:

const props = {msg: "Hello", recipient: "World"}

In spread-syntax, JSX will make the resulting examples equivalent:

<Component {...props} />

<Component msg={"Hello"} recipient={"World"} />

Appendix 670

The HOC can also return a class component:

const Enhance = OriginalComponent => {

return class extends React.Component {

render() {

return <OriginalComponent {...this.props} />;

}

};

};

Providing a class name is optional. It’s generally a good idea to provide a
meaningful name specific to the purpose of the HOC, but in this case we
don’t know what the example HOC does so we omitted the class name.

Notice that we can return whatever we want in our HOC as the render() value. To
display the original component, we just have to return it as a React component in
JSX (as we do above). We could instead modify the props of the original component
before rendering it, or we could display a completely different component based on
the state of our enhanced component.

To apply our HOC to existing components, we can call it with the original component
to get the enhanced component.

const EnhancedComponent = Enhance(OriginalComponent);

We can then use it anywhere we could use the original:

Appendix 671

...

render() {

return <EnhancedComponent />

}

...

Publishing with Expo

Instead of ejecting an application built with the Expo CLI and going through the
process of building and publishing standalone native builds manually, we also have
the option to publish with Expo. This can be done using the following command:

exp publish

Expo will take a few minutes compiling JavaScript bundles in production mode
before deploying it to the platform. Once completed, a URL will be provided that
looks like https://exp.host/@fullstackio/contact-list. You can send this link to
any user who can open your application directly through the Expo Client app.

One benefit of this approach is that users can access our application without us
having to set up standalone builds. This means we don’t have to take the steps to
create and deploy native iOS/Android builds to the app stores. The only requirement
is that users have the Expo Client application installed on their device. Every sample
application in this book has been published with Expo.

A disadvantage of relying on Expo Client for application distribution is that it only
works for users with Android devices. Users with iOS devices are significantly
limited in accessing unauthorized applications. They need to be logged in to the
same Expo account that has published the project in order to open and preview the
application through the Client app. Only Android users have the capability to open
any Expo application published to the platform using their Client app. This means
that we only have the option of deploying a native build to the iOS App Store to
allow other iOS users to test and view our React Native application.

Changelog
This document highlights the changes for each version of Fullstack React Native.

Be sure to check there to ensure that you have the latest revision.

Revision 10 - 2020-01-29

• Updated React Native to v0.61.4 (Expo SDK v36)
• Updated Expo CLI to v3.11.7
• Updated react-navigation to v4 in the Navigation chapter
• All chapters now use expo install to install packages instead of yarn add

• Several packages which were previously included in React Native, e.g. NetInfo,
are now installed separately

• The Native Modules chapter now uses npx react-native init to initialize a
new project

• All deprecated React lifecycle hooks have been removed

Revision 9 - 2019-09-23

Release notes: Updated Expo SDK to v33

Revision 8 - 2019-06-12

• Updated react-navigation to v3

Revision 7 - 2019-02-27

• Fixed incorrect npm package version

Changelog 673

Revision 6 - 2018-12-19

• The tool we use to create new projects, create-react-native-app has been
renamed/merged with expo-cli. We’ve updated the book to use this new
command.

• The native modules chapter now uses the react-native init command for
initializing a project that will use native code.

• All chapters have been updated to React Native 57 and Expo SDK 31
• We improved the Navigation chapter, using a mock API for better stability
• We handle newer iPhone sizes in the Core APIs chapter (edited)

Revision 5 - 2018-07-26

Revision 5 - Adds Native Modules chapters to the book

Revision 4 - 2018-07-20

Revision 4 - Adds Publishing & Gestures chapters to the book

Revision 3 - 2018-05-10

Revision 3 - Adds Animation chapter to the book

Revision 2 - 2018-02-28

Adds Navigation chapter to the book

Revision 1 - 2017-12-06

Initial version of the book

	Table of Contents
	Book Revision
	Bug Reports
	Be notified of updates via Twitter
	We'd love to hear from you!
	Introduction
	About This Book
	Running Code Examples
	Code Blocks and Context
	Getting Help
	Emailing Us

	Getting Started with React Native
	Weather App
	Starting the project
	Expo
	Components
	Custom components
	Summary

	React Fundamentals
	Breaking the app into components
	7 step process
	Step 2: Build a static version of the app
	Step 3: Determine what should be stateful
	Step 4: Determine in which component each piece of state should live
	Step 5: Hardcode initial states
	Step 6: Add inverse data flow
	Updating timers
	Deleting timers
	Adding timing functionality
	Add start and stop functionality
	Methodology review

	Core Components, Part 1
	What are components?
	Building an Instagram clone
	View
	StyleSheet
	Text
	TouchableOpacity
	Image
	ActivityIndicator
	FlatList

	Core Components, Part 2
	TextInput
	ScrollView
	Modal

	Core APIs, Part 1
	Building a messaging app
	Initializing the project
	The app
	Network connectivity indicator
	The message list
	Toolbar
	Geolocation
	Input Method Editor (IME)

	Core APIs, Part 2
	The keyboard
	We're Done!

	Navigation
	Navigation in React Native
	Contact List
	Starting the project
	Container and Presentational components
	Contacts
	Profile
	React Navigation
	Stack navigation
	Tab navigation
	Drawer navigation
	Sharing state between screens
	Deep Linking
	Summary

	Animation
	Animation challenges
	Building a puzzle game
	App
	Building the Start screen
	Building the Game screen
	Summary

	Gestures
	Building the board
	Gesture Responder System
	PanResponder
	Draggable component
	Finishing the game
	We're Done!

	Native Modules
	What are native modules?
	Building a native module
	Development environment
	Initializing the project
	iOS
	Android
	JavaScript

	Building and publishing
	How to read this chapter
	Building
	Building with Expo
	iOS
	Android
	Handling Updates
	Summary

	Appendix
	JavaScript Versions
	ES2015
	ReactElement
	Handling Events in React Native
	Publishing with Expo

	Changelog

